Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 116(3): 033002, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26849591

ABSTRACT

We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, and we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over the 157 µm range along the trap axis at accuracies of better than 6 nm.

2.
Phys Rev Lett ; 115(14): 143003, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26551810

ABSTRACT

We demonstrate a method to determine dipole matrix elements by comparing measurements of dispersive and absorptive light ion interactions. We measure the matrix element pertaining to the Ca II H line, i.e., the 4(2)S(1/2)↔4(2)P(1/2) transition of (40)Ca(+), for which we find the value 2.8928(43) ea(0). Moreover, the method allows us to deduce the lifetime of the 4(2)P(1/2) state to be 6.904(26) ns, which is in agreement with predictions from recent theoretical calculations and resolves a long-standing discrepancy between calculated values and experimental results.

3.
Phys Rev Lett ; 109(8): 080501, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002727

ABSTRACT

We realize fast transport of ions in a segmented microstructured Paul trap. The ion is shuttled over a distance of more than 10(4) times its ground state wave function size during only five motional cycles of the trap (280 µm in 3.6 µs). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10±0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...