Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 7(1): 130, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851849

ABSTRACT

Most CRISPR-based biosensors rely on labeled reporter molecules and expensive equipment for signal readout. A recent approach quantifies analyte concentration by sizing λ DNA reporters via gel electrophoresis, providing a simple solution for label-free detection. Here, we report an alternative strategy for label-free CRISPR-Cas12a, which relies on Cas12a trans-nicking induced supercoil relaxation of dsDNA plasmid reporters to generate a robust and ratiometric readout. The ratiometric CRISPR (rCRISPR) measures the relative percentage of supercoiled plasmid DNA to the relaxed circular DNA by gel electrophoresis for more accurate target concentration quantification. This simple method is two orders of magnitude more sensitive than the typical fluorescent reporter. This self-referenced strategy solves the potential application limitations of previously demonstrated DNA sizing-based CRISPR-Dx without compromising the sensitivity. Finally, we demonstrated the applicability of rCRISPR for detecting various model DNA targets such as HPV 16 and real AAV samples, highlighting its feasibility for point-of-care CRISPR-Dx applications.

2.
Gene Ther ; 31(5-6): 304-313, 2024 05.
Article in English | MEDLINE | ID: mdl-38528117

ABSTRACT

Efficient manufacturing of recombinant Adeno-Associated Viral (rAAV) vectors to meet rising clinical demand remains a major hurdle. One of the most significant challenges is the generation of large amounts of empty capsids without the therapeutic genome. There is no standardized analytical method to accurately quantify the viral genes, and subsequently the empty-to-full ratio, making the manufacturing challenges even more complex. We propose the use of CRISPR diagnostics (CRISPR-Dx) as a robust and rapid approach to determine AAV genome titers. We designed and developed the CRISPR-AAV Evaluation (CRAAVE) assay to maximize sensitivity, minimize time-to-result, and provide a potentially universal design for quantifying multiple transgene constructs encapsidated within different AAV serotypes. We also demonstrate an on-chip CRAAVE assay with lyophilized reagents to minimize end user assay input. The CRAAVE assay was able to detect AAV titers as low as 7e7 vg/mL with high precision (<3% error) in quantifying unknown AAV titers when compared with conventional quantitative PCR (qPCR) method. The assay only requires 30 min of assay time, shortening the analytical workflow drastically. Our results suggest CRISPR-Dx could be a promising tool for efficient rAAV genome titer quantification and has the potential to revolutionize biomanufacturing process analytical technology (PAT).


Subject(s)
CRISPR-Cas Systems , Dependovirus , Genome, Viral , Dependovirus/genetics , Humans , Genetic Vectors/genetics , HEK293 Cells
3.
PNAS Nexus ; 2(10): pgad313, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37829844

ABSTRACT

Time-resolved techniques have been widely used in time-gated and luminescence lifetime imaging. However, traditional time-resolved systems require expensive lab equipment such as high-speed excitation sources and detectors or complicated mechanical choppers to achieve high repetition rates. Here, we present a cost-effective and miniaturized smartphone lifetime imaging system integrated with a pulsed ultraviolet (UV) light-emitting diode (LED) for 2D luminescence lifetime imaging using a videoscopy-based virtual chopper (V-chopper) mechanism combined with machine learning. The V-chopper method generates a series of time-delayed images between excitation pulses and smartphone gating so that the luminescence lifetime can be measured at each pixel using a relatively low acquisition frame rate (e.g. 30 frames per second [fps]) without the need for excitation synchronization. Europium (Eu) complex dyes with different luminescent lifetimes ranging from microseconds to seconds were used to demonstrate and evaluate the principle of V-chopper on a 3D-printed smartphone microscopy platform. A convolutional neural network (CNN) model was developed to automatically distinguish the gated images in different decay cycles with an accuracy of >99.5%. The current smartphone V-chopper system can detect lifetime down to ∼75 µs utilizing the default phase shift between the smartphone video rate and excitation pulses and in principle can detect much shorter lifetimes by accurately programming the time delay. This V-chopper methodology has eliminated the need for the expensive and complicated instruments used in traditional time-resolved detection and can greatly expand the applications of time-resolved lifetime technologies.

4.
Nucleic Acids Res ; 51(18): 9894-9904, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37650631

ABSTRACT

CRISPR-Cas12a can induce nonspecific trans-cleavage of dsDNA substrate, including long and stable λ DNA. However, the mechanism behind this is still largely undetermined. In this study, we observed that while trans-activated Cas12a didn't cleave blunt-end dsDNA within a short reaction time, it could degrade dsDNA reporters with a short overhang. More interestingly, we discovered that the location of the overhang also affected the susceptibility of dsDNA substrate to trans-activated Cas12a. Cas12a trans-cleaved 3' overhang dsDNA substrates at least 3 times faster than 5' overhang substrates. We attributed this unique preference of overhang location to the directional trans-cleavage behavior of Cas12a, which may be governed by RuvC and Nuc domains. Utilizing this new finding, we designed a new hybrid DNA reporter as nonoptical substrate for the CRISPR-Cas12a detection platform, which sensitively detected ssDNA targets at sub picomolar level. This study not only unfolded new insight into the trans-cleavage behavior of Cas12a but also demonstrated a sensitive CRISPR-Cas12a assay by using a hybrid dsDNA reporter molecule.

5.
Front Chem ; 10: 983523, 2022.
Article in English | MEDLINE | ID: mdl-36238093

ABSTRACT

Monitoring and measurement of carbon dioxide (CO2) is critical for many fields. The gold standard CO2 sensor, the Severinghaus electrode, has remained unchanged for decades. In recent years, many other CO2 sensor formats, such as detection based upon pH-sensitive dyes, have been demonstrated, opening the door for relatively simple optical detection schemes. However, a majority of these optochemical sensors require complex sensor preparation steps and are difficult to control and repeatably execute. Here, we report a facile CO2 sensor generation method that suffers from none of the typical fabrication issues. The method described here utilizes polydimethylsiloxane (PDMS) as the flexible sensor matrix and 1-hydroxypyrene-3,6,8-trisulfonate (HPTS), a pH-sensitive dye, as the sensing material. HPTS, a base (NaOH), and glycerol are loaded as dense droplets into a thin PDMS layer which is subsequently cured around the droplet. The fabrication process does not require prior knowledge in chemistry or device fabrication and can be completed as quickly as PDMS cures (∼2 h). We demonstrate the application of this thin-patch sensor for in-line CO2 quantification in cell culture media. To this end, we optimized the sensing composition and quantified CO2 in the range of 0-20 kPa. A standard curve was generated with high fidelity (R 2 = 0.998) along with an analytical resolution of 0.5 kPa (3.7 mm Hg). Additionally, the sensor is fully autoclavable for applications requiring sterility and has a long working lifetime. This flexible, simple-to-manufacture sensor has a myriad of potential applications and represents a new, straightforward means for optical carbon dioxide measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...