Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Microdevices ; 26(2): 18, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416278

ABSTRACT

High-throughput transcriptomics is of increasing fundamental biological and clinical interest. The generation of molecular data from large collections of samples, such as biobanks and drug libraries, is boosting the development of new biomarkers and treatments. Focusing on gene expression, the transcriptomic market exploits the benefits of next-generation sequencing (NGS), leveraging RNA sequencing (RNA-seq) as standard for measuring genome-wide gene expression in biological samples. The cumbersome sample preparation, including RNA extraction, conversion to cDNA and amplification, prevents high-throughput translation of RNA-seq technologies. Bulk RNA barcoding and sequencing (BRB-seq) addresses this limitation by enabling sample preparation in multi-well plate format. Sample multiplexing combined with early pooling into a single tube reduces reagents consumption and manual steps. Enabling simultaneous pooling of all samples from the multi-well plate into one tube, our technology relies on smart labware: a pooling lid comprising fluidic features and small pins to transport the liquid, adapted to standard 96-well plates. Operated with standard fluidic tubes and pump, the system enables over 90% recovery of liquid in a single step in less than a minute. Large scale manufacturing of the lid is demonstrated with the transition from a milled polycarbonate/steel prototype into an injection molded polystyrene lid. The pooling lid demonstrated its value in supporting high-throughput barcode-based sequencing by pooling 96 different DNA barcodes directly from a standard 96-well plate, followed by processing within the single sample pool. This new pooling technology shows great potential to address medium throughput needs in the BRB-seq workflow, thereby addressing the challenge of large-scale and cost-efficient sample preparation for RNA-seq.


Subject(s)
High-Throughput Nucleotide Sequencing , RNA , Feces
2.
J Mech Behav Biomed Mater ; 143: 105900, 2023 07.
Article in English | MEDLINE | ID: mdl-37201227

ABSTRACT

Intervertebral disc (IVD) degeneration and regenerative therapies are commonly studied in organ-culture experiments with uniaxial compressive loading. Recently, in our laboratory, we established a bioreactor system capable of applying loads in six degrees-of-freedom (DOF) to bovine IVDs, which replicates more closely the complex multi-axial loading of the IVD in vivo. However, the magnitudes of loading that are physiological (able to maintain cell viability) or mechanically degenerative are unknown for load cases combining several DOFs. This study aimed to establish physiological and degenerative levels of maximum principal strains and stresses in the bovine IVD tissue and to investigate how they are achieved under complex load cases related to common daily activities. The physiological and degenerative levels of maximum principal strains and stresses were determined via finite element (FE) analysis of bovine IVD subjected to experimentally established physiological and degenerative compressive loading protocols. Then, complex load cases, such as a combination of compression + flexion + torsion, were applied on the FE-model with increasing magnitudes of loading to discover when physiological and degenerative tissue strains and stresses were reached. When applying 0.1 MPa of compression and ±2-3° of flexion and ±1-2° of torsion the investigated mechanical parameters remained at physiological levels, but with ±6-8° of flexion in combination with ±2-4° of torsion, the stresses in the outer annulus fibrosus (OAF) exceeded degenerative levels. In the case of compression + flexion + torsion, the mechanical degeneration likely initiates at the OAF when loading magnitudes are high enough. The physiological and degenerative magnitudes can be used as guidelines for bioreactor experiments with bovine IVDs.


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Cattle , Humans , Intervertebral Disc/physiology , Finite Element Analysis , Bioreactors
3.
Cells ; 12(4)2023 02 10.
Article in English | MEDLINE | ID: mdl-36831243

ABSTRACT

Cardiomyocyte alignment in myocardium tissue plays a significant role in the physiological, electrical, and mechanical functions of the myocardium. It remains, however, difficult to align cardiac cells in a 3D in vitro heart model. This paper proposes a simple method to align cells using microfabricated Polydimethylsiloxane (PDMS) grooves with large dimensions (of up to 350 µm in width), similar to the dimensions of trabeculae carneae, the smallest functional unit of the myocardium. Two cell groups were used in this work; first, H9c2 cells in combination with Nor10 cells for proof of concept, and second, neonatal cardiac cells to investigate the functionality of the 3D model. This model compared the patterned and nonpatterned 3D constructs, as well as the 2D cell cultures, with and without patterns. In addition to alignment, we assessed the functionality of our proposed 3D model by comparing beating rates between aligned and non-aligned structures. In order to assess the practicality of the model, the 3D aligned structures should be demonstrated to be detachable and alignable. This evaluation is crucial to the use of this 3D functional model in future studies related to drug screening, building blocks for tissue engineering, and as a heart-on-chip by integrating microfluidics.


Subject(s)
Microphysiological Systems , Myocytes, Cardiac , Humans , Infant, Newborn , Myocardium , Tissue Engineering/methods , Cell Culture Techniques
4.
Bioengineering (Basel) ; 10(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36829760

ABSTRACT

Myocardium consists of cardiac cells that interact with their environment through physical, biochemical, and electrical stimulations. The physiology, function, and metabolism of cardiac tissue are affected by this dynamic structure. Within the myocardium, cardiomyocytes' orientations are parallel, creating a dominant orientation. Additionally, local alignments of fibers, along with a helical organization, become evident at the macroscopic level. For the successful development of a reliable in vitro cardiac model, evaluation of cardiac cells' behavior in a dynamic microenvironment, as well as their spatial architecture, is mandatory. In this study, we hypothesize that complex interactions between long-term contraction boundary conditions and cyclic mechanical stimulation may provide a physiological mechanism to generate off-axis alignments in the preferred mechanical stretch direction. This off-axis alignment can be engineered in vitro and, most importantly, mirrors the helical arrangements observed in vivo. For this purpose, uniaxial mechanical stretching of dECM-fibrin hydrogels was performed on pre-aligned 3D cultures of cardiac cells. In view of the potential development of helical structures similar to those in native hearts, the possibility of generating oblique alignments ranging between 0° and 90° was explored. Indeed, our investigations of cell alignment in 3D, employing both mechanical stimulation and groove constraint, provide a reliable mechanism for the generation of helicoidal structures in the myocardium. By combining cyclic stretch and geometric alignment in grooves, an intermediate angle toward favored direction can be achieved experimentally: while cyclic stretch produces a perpendicular orientation, geometric alignment is associated with a parallel one. In our 2D and 3D culture conditions, nonlinear cellular addition of the strains and strain avoidance concept reliably predicted the preferred cellular alignment. The 3D dECM-fibrin model system in this study shows that cyclical stretching supports cell survival and development. Using mechanical stimulation of pre-aligned heart cells, maturation markers are augmented in neonatal cardiomyocytes, while the beating culture period is prolonged, indicating an improved model function. We propose a simplified theoretical model based on numerical simulation and nonlinear strain avoidance by cells to explain oblique alignment angles. Thus, this work lays a possible rational basis for understanding and engineering oblique cellular alignments, such as the helicoidal layout of the heart, using approaches that simultaneously enhance maturation and function.

5.
Lab Chip ; 22(21): 4043-4066, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36196619

ABSTRACT

Complex three-dimensional (3D) in vitro models are emerging as a key technology to support research areas in personalised medicine, such as drug development and regenerative medicine. Tools for manipulation and positioning of microtissues play a crucial role in the microtissue life cycle from production to end-point analysis. The ability to precisely locate microtissues can improve the efficiency and reliability of processes and investigations by reducing experimental time and by providing more controlled parameters. To achieve this goal, standardisation of the techniques is of primary importance. Compared to microtissue production, the field of microtissue manipulation and positioning is still in its infancy but is gaining increasing attention in the last few years. Techniques to position microtissues have been classified into four main categories: hydrodynamic techniques, bioprinting, substrate modification, and non-contact active forces. In this paper, we provide a comprehensive review of the different tools for the manipulation and positioning of microtissues that have been reported to date. The working mechanism of each technique is described, and its merits and limitations are discussed. We conclude by evaluating the potential of the different approaches to support progress in personalised medicine.


Subject(s)
Tissue Engineering , Reproducibility of Results , Tissue Engineering/methods
6.
ACS Biomater Sci Eng ; 8(9): 3969-3976, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35977717

ABSTRACT

A new generation of bioreactors with integrated six degrees of freedom (6 DOF) aims to mimic more accurately the natural intervertebral disc (IVD) load. We developed and validated in a biological and mechanical study a specimen holder and corresponding ex vivo IVD organ model according to the bioreactor requirements for multiaxial loading and a long-term IVD culture. IVD height changes and cell viability were compared between the 6 DOF model and the standard 1 DOF model throughout the 3 weeks of cyclic compressive loading in the uniaxial bioreactor. Furthermore, the 6 DOF model and holder were loaded for 9 days in the multiaxial bioreactor under development using the same conditions, and the IVDs were evaluated for cell viability. The interface of the IVD model and specimen holder, enhanced with fixation screws onto the bone, was tested in compression, torsion, lateral bending, and tension. Additionally, critical motions such as tension and bending were assessed for a combination of side screws and top screws or side screws and adhesive. The 6 DOF model loaded in the uniaxial bioreactor maintained similar cell viability in the IVD regions as the 1 DOF model. The viability was high after 2 weeks throughout the whole IVD and reduced by more than 30% in the inner annulus fibrous after 3 weeks. Similarly, the IVDs remained highly viabile when cultured in the multiaxial bioreactor. In both models, IVD height changes after loading were in the range of typical physiological conditions. When differently directed motions were applied, the holder-IVD interface remained stable under hyper-physiological loading levels using a side screw approach in compression and torsion and the combination of side and top screws in tension and bending. We thus conclude that the developed holding system is mechanically reliable and biologically compatible for application in a new generation of multiaxial bioreactors.


Subject(s)
Intervertebral Disc , Bioreactors , Intervertebral Disc/physiology , Organ Culture Techniques
7.
Sci Rep ; 12(1): 9991, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705590

ABSTRACT

Standardised and high-throughput methods have been developed for the production and experimental handling of some 3D in vitro models. However, adapted analytical tools are still missing for scientists and researchers to fully exploit the potential of complex cellular models in pre-clinical drug testing and precision medicine. Histology is the established, cost-effective and gold standard method for structural and functional tissue analysis. However, standard histological processes are challenging and costly to apply to 3D cell models, as their small size often leads to poor alignment of samples, which lowers analysis throughput. This body of work proposes a new approach: HistoBrick facilitates histological processing of spheroids and organoids by enabling gel embedding of 3D cell models with precise coplanar alignment, parallel to the sectioning plane, thus minimising the loss of sample material. HistoBrick's features are compatible with automation standards, potentially allowing automated sample transfer from a multi-well plate to the gel device. Moreover, HistoBrick's technology was validated by demonstrating the alignment of HepG2 cultured spheroids measuring 150-200 µm in diameter with a height precision of ± 80 µm. HistoBrick allows up to 96 samples to be studied across minimal sections, paving the way towards high-throughput micro-histology.


Subject(s)
Hydrogels , Spheroids, Cellular , Cell Culture Techniques/methods , Histological Techniques
8.
J Vis Exp ; (107)2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26779607

ABSTRACT

A new method for solid phase extraction (SPE) of environmental water samples is proposed. The developed prototype is cost-efficient and user friendly, and enables to perform rapid, automated and simple SPE. The pre-concentrated solution is compatible with analysis by immunoassay, with a low organic solvent content. A method is described for the extraction and pre-concentration of natural hormone 17ß-estradiol in 100 ml water samples. Reverse phase SPE is performed with octadecyl-silica sorbent and elution is done with 200 µl of methanol 50% v/v. Eluent is diluted by adding di-water to lower the amount of methanol. After preparing manually the SPE column, the overall procedure is performed automatically within 1 hr. At the end of the process, estradiol concentration is measured by using a commercial enzyme-linked immune-sorbent assay (ELISA). 100-fold pre-concentration is achieved and the methanol content in only 10% v/v. Full recoveries of the molecule are achieved with 1 ng/L spiked de-ionized and synthetic sea water samples.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Estradiol/isolation & purification , Solid Phase Extraction/methods , Water Pollutants, Chemical/isolation & purification , Water/chemistry , Endocrine Disruptors/analysis , Endocrine Disruptors/isolation & purification , Estradiol/analysis , Organic Chemicals/analysis , Organic Chemicals/isolation & purification , Seawater/chemistry , Silicon Dioxide/chemistry , Solvents/analysis , Solvents/isolation & purification , Water Pollutants, Chemical/analysis
9.
J Chromatogr A ; 1381: 22-8, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25604269

ABSTRACT

A fully automated and portable system for solid phase extraction (SPE) has been developed for the analysis of the natural hormone 17ß-estradiol (E2) in environmental water by enzyme linked immuno-sorbent assay (ELISA). The system has been validated with de-ionized and artificial sea water as model samples and allowed for pre-concentration of E2 at levels of 1, 10 and 100 ng/L with only 100 ml of sample. Recoveries ranged from 24±3% to 107±6% depending on the concentration and sample matrix. The method successfully allowed us to determine the concentration of two seawater samples. A concentration of 15.1±0.3 ng/L of E2 was measured in a sample obtained from a food production process, and 8.8±0.7 ng/L in a sample from the Adriatic Sea. The system would be suitable for continuous monitoring of water quality as it is user friendly, and as the method is reproducible and totally compatible with the analysis of water sample by simple immunoassays and other detection methods such as biosensors.


Subject(s)
Estradiol/analysis , Estrogens/analysis , Water Pollutants, Chemical/analysis , Water/analysis , Immunoassay , Seawater/analysis , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...