Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(10): e202315326, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38226704

ABSTRACT

A novel single-atom Ni(II) catalyst (Ni-OH) is covalently immobilized onto the nano-channels of mesoporous Santa Barbara Amorphous (SBA)-15 particles and isotropic Anodized Aluminum Oxide (AAO) membrane for confined-space ethylene extrusion polymerization. The presence of surface-tethered Ni complexes (Ni@SBA-15 and Ni@AAO) is confirmed by the inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray photoelectron spectroscopy (XPS). In the catalytic spinning process, the produced PE materials exhibit very homogeneous fibrous morphology at nanoscale (diameter: ~50 nm). The synthesized PE nanofibers extrude in a highly oriented manner from the nano-reactors at ambient temperature. Remarkably high Mw (1.62×106  g mol-1 ), melting point (124 °C), and crystallinity (41.8 %) are observed among PE samples thanks to the confined-space polymerization. The chain-walking behavior of surface tethered Ni catalysts is greatly limited by the confinement inside the nano-channels, leading to the formation of very low-branched PE materials (13.6/1000 C). Due to fixed supported catalytic topology and room temperature, the filaments are expected to be free of entanglement. This work signifies an important step towards the realization of a continuous mild catalytic-spinning (CATSPIN) process, where the polymer is directly synthesized into fiber shape at negligible chain branching and elegantly avoiding common limitations like thermal degradation or molecular entanglement.

2.
Polymers (Basel) ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015517

ABSTRACT

Bicomponent photoluminescent polymer optical fibers (PL-POFs) have been melt-spun and in-situ drawn to different extents. The results suggest that scattering in the sheath can effectively increase the photoluminescent dye excitation probability in the fiber core. The core/sheath PL-POFs are made of a semi-crystalline fluoropolymer sheath of low refractive index (RI) and an amorphous cycloolefin polymeric core of high RI, which is doped with a luminescent dye. The axial light emission, as well as the guiding attenuation coefficients of the core/sheath PL-POFs, have been measured using a side-illumination set-up. The incident blue laser is down-converted to red light, which is re-emitted and partially guided by the core. The axial light emission is measured at the fiber tip as a function of the distance from the illumination position to the integrating sphere. It is demonstrated that the presence of a semi-crystalline sheath significantly enhances the axial light emission and that it also lowers the attenuation coefficient, compared to the emission and guiding properties of PL core-only fibers. Additionally, the attenuation coefficient has been found to be lower in more strongly drawn PL-POFs. Wide-angle X-ray diffraction and small-angle X-ray scattering experiments reveal structural differences in differently drawn PL-POFs that can be linked to the observed differences in the optical properties.

3.
ACS Appl Mater Interfaces ; 14(34): 39467-39477, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35994435

ABSTRACT

The phosphonic acid (PA) surface treatment on various metal substrates is of high industrial relevance, and the PA molecular structure significantly affects its quality. In this work, systematic variation of the PA molecular steric and electron environment helps discern two steady-state adsorption modes on an aluminum surface. The PA molecular structure was varied systematically, which included inorganic phosphorus acid, alkyl phosphonic acids, and phenyl phosphonic acids. To explore their in situ dynamics of adsorption/desorption on the electrochemically unstable aluminum, techniques such as electrochemical impedance spectroscopy and inductively coupled plasma optical emission spectrometry were employed. A range of different types of interfacial layers are formed on the aluminum surface, namely, from the dissolution-limiting physisorbed layer to a quasi-inhibiting chemisorbed layer on the aluminum surface in acidic (pH ≈ 2.2) solution. Presented findings establish the dynamic steady-state nature of this type of interface. They reveal fundamental relationships among adsorbent steric or electronic effects, the steady-state interface morphology, and the steady-state aluminum dissolution rate. The study brings also a more differentiated molecular structure-related description of the aluminum dissolution inhibition of PAs and relates it to molecular density functional theory calculations.

4.
Materials (Basel) ; 14(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916262

ABSTRACT

The increasing interest in luminescent waveguides, applied as light concentrators, sensing elements, or decorative illuminating systems, is fostering efforts to further expand their functionality. Yarns and textiles based on a combination of distinct melt-spun polymer optical fibers (POFs), doped with individual luminescent dyes, can be beneficial for such applications since they enable easy tuning of the color of emitted light. Based on the energy transfer occurring between differently dyed filaments within a yarn or textile, the collective emission properties of such assemblies are adjustable over a wide range. The presented study demonstrates this effect using multicolor, meltspun, and photoluminescent POFs to measure their superimposed photoluminescent emission spectra. By varying the concentration of luminophores in yarn and fabric composition, the overall color of the resulting photoluminescent textiles can be tailored by the recapturing of light escaping from individual POFs. The ensuing color space is a mean to address the needs of specific applications, such as decorative elements and textile illumination by UV down-conversion.

5.
Environ Sci Technol ; 54(8): 4847-4855, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32250104

ABSTRACT

Microplastic fibers (MPFs) have been found to be a major form of microplastics in freshwaters, and washing of synthetic textiles has been identified as one of their main sources. The aim of this work was to use a panel of 12 different textiles of representative fibers and textile types to investigate the source(s) of the MPF during washing. Using standardized washing tests, textile swatches tailored using five different cutting/sewing methods were washed up to 10 times. The MPF quantity and fiber length were determined using image analysis. The 12 textiles demonstrated great variability in MPF release, ranging from 210 to 72,000 MPF/g textile per wash. The median MPF length ranged from 165 to 841 µm. The number of released MPF was influenced by the cutting method, where scissor-cut samples released 3-21 times higher numbers of MPF than the laser-cut samples. The textiles with mechanically processed surfaces (i.e., fleece) released significantly more (p-value < 0.001) than the textiles with unprocessed surfaces. For all textiles, the MPF release decreased with repeated wash cycles, and a small continuous fiber release was observed after 5-6 washings, accompanied by a slight increase in the fiber length. The decrease in the number of MPF released is likely caused by depletion of the production-inherited MPFs trapped within the threads or the textile structure. The comparison of MPF release from laser-cut samples, which had sealed edges, and the other cutting methods allowed us to separate the contributions of the edge- and surface-sourced fibers from the textiles to the total release. On an average, 84% (range 49-95%) of the MPF release originated from the edges, highlighting the importance of the edge-to-surface ratio when comparing different release studies. The large contribution of the edges to the total release offers options for technical solutions which have the possibility to control MPF formation throughout the textile manufacturing chain by using cutting methods which minimize MPF formation.


Subject(s)
Plastics , Polyesters , Microplastics , Textiles
6.
Colloids Surf B Biointerfaces ; 190: 110908, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32163842

ABSTRACT

The role of water structure near surfaces has been scrutinized extensively because it is accepted to control protein-surface interactions, however, often avoiding effects of hydration dynamics. Relating to this, we have recently discussed how the amount and state of water, accumulated within various hydrophobic-to-hydrophilic subsurface gradients of plasma polymer films, influence the magnitude of adsorbed bovine serum albumin, spurring the hypothesis of the presence of a subsurface dipolar field. This study now analyzes the kinetics of hydration by systematically introducing modified gradient architectures and relating different hydration times to the adsorption of a dipolar probing protein. We find that dry-stored subsurface gradients, owing nominally identical surface characteristics, exhibits comparable surface potential and protein adsorption values, while they behave in a different manner at transient hydration times of few hours, before reaching near-equilibrium state of the hydration. A characteristic hydration time is found where protein adsorption on gradient films is minimal, unveiling the transient nature of the effect. In general, protein adsorption is sensitive to the time allowed for hydration of the adsorbent surface, supporting our initial hypothesis inasmuch as the quantity as well as quality of water inside the subsurface matrix is crucial for controlling protein-surface interactions.


Subject(s)
Serum Albumin, Bovine/chemistry , Water/chemistry , Adsorption , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Particle Size , Surface Properties
7.
ACS Appl Mater Interfaces ; 11(45): 42760-42772, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31644873

ABSTRACT

Recently, it has been shown that water, confined in a plasma polymer subsurface chemical gradient, nanometers below the surface, significantly reduced the amount of adsorbed protein bovine serum albumin (BSA). Relating to this effect, we proposed the hypothesis that oriented water molecules within the subsurface gradient generate a long-range dipolar field, which interacts with dipolar proteins such as BSA near the surface region. This study extends the above used in situ multistep plasma deposition process to introduce plasma oxidation modifications of the subsurface architecture with the aim to further control the effect on protein adsorption. Neutron reflectivity measurements reveal that the oxidation time increases the amount of matrix-confined water. There is, however, an optimal oxidation time to obtain minimal protein adsorption, which suggests that a minimal distance between confined water molecules plays an important role. Altogether we can extend the range of controlling the adsorbed protein mass by the introduction of this additional plasma oxidation step.


Subject(s)
Serum Albumin, Bovine/chemistry , Adsorption , Animals , Cattle , Oxidation-Reduction , Plasma/chemistry , Surface Properties
8.
Biointerphases ; 13(3): 03B417, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29621884

ABSTRACT

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is increasingly used for the detailed chemical characterization of complex organic materials. Of particular interest in biointerface materials, it provides the accurate molecular information on their surface, a prerequisite for the understanding of subsequent interaction with biomaterials. Plasma polymer films are promising biointerface materials, as tuning the deposition parameters allows the control over film stability and density of surface functional groups. However, the optimization of these film properties not only requires a detailed characterization of the film chemistry, but also that of the deposition mechanisms. Here, ToF-SIMS is used within its different operation modes to investigate those on several plasma polymer film designs. The detailed information on surface molecular chemistry, interface conformation, vertical and lateral chemical and cross-linking gradients is gathered and linked to the underlying deposition mechanisms. In combination with other techniques, the interpretation and understanding of the final functional property of the films in terms of protein adsorption and site-specific binding is achieved.

9.
Sci Rep ; 7(1): 17852, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259309

ABSTRACT

Surface properties are generally determined by the top most surface layer also defining how molecules adsorb onto it. By exploring effects due to interactions with deeper subsurface layers, however, long-range interaction forces were found to also significantly contribute to molecular adsorption, in which hydration of the subsurface region is the key factor. Water molecules confined to a subsurface amphiphilic gradient are confirmed to cause these long-range dipolar interactions by preferential orientation, thus significantly changing the way how a protein interacts with the surface. These findings imply future exploitation of an additional factor to modulate adsorption processes.


Subject(s)
Water/chemistry , Adsorption , Surface Properties
10.
Langmuir ; 33(9): 2340-2352, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28195489

ABSTRACT

Controlling the balance between stability and functional group density in grown plasma polymer films is the key to diverse applications such as drug release, tissue-engineered implants, filtration, contact lenses, microfluidics, electrodes, sensors, etc. Highly functional plasma polymer films typically show a limited stability in air or aqueous environments due to mechanisms like molecular reorganization, oxidation, and hydrolysis. Stabilization is achieved by enhancing cross-linking at the cost of the terminal functional groups such as -OH and -COOH, but also -NH2, etc. To overcome such limitations, a structural and chemical gradient was introduced perpendicular to the surface plane; this vertical gradient structure is composed of a highly cross-linked base layer, gradually changing into a more functional nanoscaled surface termination layer. This was achieved using CO2/C2H4 discharges with decreasing power input and increasing gas ratio during plasma polymer deposition. The aging behavior and stability of such oxygen-functional vertical gradient nanostructures were studied in air and in different aqueous environments (acidic pH 4, neutral pH ≈ 6.2, and basic pH 10). Complementary characterization methods were used, including angle-resolved X-ray photoelectron spectroscopy (ARXPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) as well as water contact angle (WCA) measurements. It was found that in air, the vertical gradient films are stabilized over a period of months. The same gradients also appear to be stable in neutral water over a period of at least 1 week. Changes in the oxygen depth profiles have been observed at pH 4 and pH 10 showing structural and chemical aging effects on different time scales. The use of vertical gradient plasma polymer nanofilms thus represents a novel approach providing enhanced stability, thus opening the possibility for new applications.

11.
Langmuir ; 32(3): 651-4, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26716609

ABSTRACT

Vertical chemical gradients extending over a few nanometers were explored. The gradients are based on plasma-polymerized oxygen-containing ethylene (ppOEt) films. Using plasma conditions with low CO2/C2H4 ratio and high energy input, cross-linked films were deposited as base layer, while increasing CO2 and lowering energy input resulted in less cross-linked yet highly functional films as applied as top layer. Aging studies indicate that, in particular, for very thin gradient structures, the cross-linked subsurface zone effectively hinders reorientation of the surface functional groups, thus restricting hydrophobic recovery and oxidation effects.

12.
Langmuir ; 31(47): 12944-53, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26451512

ABSTRACT

Thin plasma polymer films were deposited in hexamethyldisiloxane (HMDSO) and HMDSO/O2 low-pressure discharges and their chemical structures analyzed using infrared (IR) spectroscopy and neutron reflectometry (NR). The (plasma-polymerized) ppHMDSO film exhibits hydrophobic, poly(dimethylsiloxane)-like properties, while the retention of carbon groups is reduced by O2 addition, yielding a more inorganic, hydrophilic ppSiOx film. Both films show a minor (vertical) density gradient perpendicular to the substrate, where the exposed film surface seems to be more oxidized, indicating oxidative aging reactions upon contact with air. The hydration and water uptake abilities of the films in aqueous environments were investigated in humid environments using ellipsometry, NR in D2O, and multiple transmission-reflection IR measurements after equilibration of the films in water.


Subject(s)
Siloxanes/chemistry , Water/chemistry , Polymerization , Spectrophotometry, Infrared
13.
Phys Chem Chem Phys ; 14(17): 6085-93, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22441032

ABSTRACT

In this work we revisit the surface forces measured between two atomically flat mica surfaces submerged in a reservoir of potassium nitrate (KNO(3)) solution. We consider a comprehensive range of concentrations from 0.08 mM to 2.6 M. The significantly improved resolution available from the extended surface force apparatus (eSFA) allows the distinction of hydration structures and hydrated-ion correlations. Above concentrations of 0.3 mM, hydrated-ion correlations give rise to multiple collective transitions (4 ± 1 Å) in the electrical double layers upon interpenetration. These features are interpreted as the result of hydrated-ion ordering (e.g. layering), in contrast to the traditional interpretation invoking water layering. The hydrated-ion layer adjacent to the surface (i.e. outer Helmholtz layer) is particularly well defined and plays a distinctive role. It can be either collectively expelled in a 5.8 ± 0.3 Å film-thickness transition or collectively forced to associate with the surface by external mechanical work. The latter is observed as a characteristic 2.9 ± 0.3 Å film-thickness transition along with an abrupt decrease of surface adhesion at concentrations above 1 mM. At concentrations as low as 20 mM, attractive surface forces are measured in deviation to the DLVO theory. The hydration number in the confined electrolyte seems to be significantly below that of the bulk. A 1-3 nm thick ionic layer solidifies at the surfaces at concentrations >100 mM, i.e. below bulk saturation.

14.
J R Soc Interface ; 8(60): 1019-30, 2011 Jul 06.
Article in English | MEDLINE | ID: mdl-21247951

ABSTRACT

Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Metal Nanoparticles/chemistry , Pseudomonas aeruginosa/drug effects , Silver/pharmacology , Staphylococcus aureus/drug effects , 3T3 Cells , Animals , Cell Proliferation/drug effects , Formazans/chemistry , Metal Nanoparticles/ultrastructure , Mice , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Tetrazolium Salts/chemistry , X-Ray Absorption Spectroscopy
15.
Appl Spectrosc ; 64(10): 1139-44, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20925984

ABSTRACT

Spectrometer calibration accuracies are of high importance for a wide range of applications. Typically, one calibrates the spectrometer with a calibration lamp, providing distinct and well-defined calibration lines. However, for small spectral ranges, where only two calibration lines are present, the calibration becomes inaccurate. We present a high-precision nonlinear wavelength calibration method, which is based on two or more reference lines from a calibration lamp. The additional key element introduced is a Fabry-Perot multilayer structure that yields multiple sharp transmission maxima of similar intensity over the full spectrometer range under broad-band illumination (e.g., white-light source). An iterative algorithm is put forward to obtain a self-consistent calibration of picometer precision over the full spectrometer range. In regions distant from calibration lines the accuracy is enhanced by at least a factor of two compared to conventional methods.

16.
Rev Sci Instrum ; 81(5): 053102, 2010 May.
Article in English | MEDLINE | ID: mdl-20515119

ABSTRACT

The combination of interferometry and plasmonic structure, which consists of gold nanoparticle layer, sputter coated silicon oxide spacer layer, and aluminum mirror layer, was studied in transmission mode for biosensing and refractive index sensing applications. Because of the interferometric nature of the system, the information of the reflection amplitude and phase of the plasmonic layer can be deduced from one spectrum. The modulation amplitude in the transmission spectrum, caused by the interference between the plasmonic particle layer and the mirror layer, increases upon the refractive index increase around the plasmonic particles due to their coherent backscattering property. Our proposed evaluation method requires only two light sources with different wavelengths for a stable self-referenced signal, which can be easily and precisely tuned by a transparent spacer layer thickness. Unlike the standard localized surface plasmon sensors, where a sharp resonance peak is essential, a broad band plasmon resonance is accepted in this method. This leads to large fabrication tolerance of the plasmonic structures. We investigated bulk and adsorption layer sensitivities both experimentally and by simulation. The highest sensitivity wavelength corresponded to the resonance of the plasmonic particles, but useful signals are produced in a much broader spectral range. Analysis of a single transmission spectrum allowed us to access the wavelength-dependent complex reflection coefficient of the plasmonic particle layer, which confirmed the reflection amplitude increase in the plasmonic particle layer upon molecular adsorption.


Subject(s)
Interferometry/instrumentation , Photometry/instrumentation , Surface Plasmon Resonance/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Optical Devices , Reproducibility of Results , Sensitivity and Specificity
17.
J Synchrotron Radiat ; 17(4): 465-72, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20567078

ABSTRACT

An X-ray reflectivity theory on the determination of the density profile of a molecular liquid under nanometre confinement is presented. The confinement geometry acts like an X-ray interferometer, which consists of two opposing atomically flat single-crystal mica membranes with an intervening thin liquid film of variable thickness. The X-rays reflected from the parallel crystal planes (of known structure) and the layered liquid in between them (of unknown structure) interfere with one another, making X-ray reflectivity highly sensitive to the liquid's density profile along the confinement direction. An expression for the reflected intensity as a function of momentum transfer is given. The total structure factor intensity for the liquid-filled confinement device is derived as a sum of contributions from the inner and outer crystal terminations. The method presented readily distinguishes the confined liquid from the liquid adsorbed on the outer mica surfaces. It is illustrated for the molecular liquid tetrakis(trimethyl)siloxysilane, confined by two mica surfaces at a distance of 8.6 nm.

18.
J Phys Condens Matter ; 22(23): 235102, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-21393761

ABSTRACT

Ultrathin (<12 nm) films of tetrakis(trimethyl)siloxysilane (TTMSS) have been confined by atomically flat mica membranes in the presence and absence of applied normal forces. When applying normal forces, discrete film thickness transitions occur, each involving the expulsion of TTMSS molecules. Using optical interferometry we have measured the step size associated with a film thickness transition (7.5 Å for compressed, 8.4 Å for equilibrated films) to be smaller than the molecular diameter of 9.0 Å. Layering transitions with a discrete step size are commonly regarded as evidence for strong layering of the liquid's molecules in planes parallel to the confining surfaces and it is assumed that the layer spacing equals the measured periodicity of the oscillatory force profile. Using x-ray reflectivity (XRR), which directly yields the liquid's density profile along the confinement direction, we show that the layer spacing (10-11 Å) proves to be on average significantly larger than both the step size of a layering transition and the molecular diameter. We observe at least one boundary layer of different electron density and periodicity than the layers away from the surfaces.


Subject(s)
Organosilicon Compounds/chemistry , Oscillometry/methods , Silanes/chemistry , Aluminum Silicates/chemistry , Equipment Design , Interferometry/methods , Materials Testing , Normal Distribution , Surface Properties , Synchrotrons , X-Rays
19.
J Chem Phys ; 129(15): 154509, 2008 Oct 21.
Article in English | MEDLINE | ID: mdl-19045211

ABSTRACT

Cyclohexane allowed to capillary condense from vapor in an annular wedge pore of mica in a surface force apparatus (SFA) remains liquid down to at least 14 K below the bulk melting-point T(m). This is an example of supercooling of a liquid due to confinement, like melting-point depression in porous media. In the wedge pore, however, the supercooled liquid is in equilibrium with vapor, and the amount of liquid (and thereby the radius of curvature r of the liquid-vapor interface) depends on the surface tension gamma(LV) of the liquid, not the interfacial tension between the solid and liquid. At coexistence r is inversely proportional to the temperature depression DeltaT below T(m), in accordance with a recently proposed model [P. Barber, T. Asakawa, and H. K. Christenson, J. Phys. Chem. C 111, 2141 (2007)]. We have now extended this model to include effects due to the temperature dependence of both the surface tension and the enthalpy of melting. The predictions of the improved model have been quantitatively verified in experiments using both a Mark IV SFA and an extended surface force apparatus (eSFA). The three-layer interferometer formed by the two opposing, backsilvered mica surfaces in a SFA was analyzed by conventional means (Mark IV) and by fast spectral correlation of up to 40 fringes (eSFA). We discuss the absence of freezing in the outermost region of the wedge pore down to 14 K below T(m) and attribute it to nonequilibrium (kinetic) supercooling, whereas the inner region of the condensate is thermodynamically supercooled.

SELECTION OF CITATIONS
SEARCH DETAIL
...