Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 64(12): 125007, 2019 06 12.
Article in English | MEDLINE | ID: mdl-30986778

ABSTRACT

This work aims at measuring experimentally proton induced secondary electron energy spectra after interaction with gold nano particles (GNPs) and polymer-coated GNPs. Backscattered electron energy spectra were collected over a 0 to 1000 eV energy range using a retarding field analyzer (RFA). This paper presents the spectra obtained for proton beam energies of 0.5 and 2 MeV and diameter 2.5 and 3.8 nm GNPs. The spectra were also measured for 3.8 nm GNPs after 5 and 10 MeV proton irradiations. GNPs were deposited on a 100 nm carbon film. Each experimental spectrum was compared with dedicated simulations based on existing numerical models used in the TRAX and Geant4 Monte Carlo codes. For 100 nm carbon target, good agreement between experimental, TRAX and Geant4 simulation results can be observed. For 3.8 nm GNPs, the TRAX simulations reproduce with good agreement the electron energy spectra produced after 0.5, 2, 5 and 10 MeV proton irradiations, while Geant4 spectra display a lower secondary electron yield at low energy (<600 eV) for all the studied energies. This underestimation can mostly be explained by the 790 eV threshold applied in the condensed history model used by Geant4 which impacts the secondary electron energy distribution. Results obtained for carbon and gold targets highlight the impact of the secondary electron production threshold for proton ionization process considered in condensed history models. The experimental results demonstrate that the single interaction approach used in TRAX is adapted to reproduce secondary electron emission from GNPs. On the other hand, the standard electron generation threshold implement in G4BetheBlochModel and G4BraggModel condensed-history models used in Geant4 is not adapted to reproduce low energy electron emission in gold targets. Finally, the results highlight that the GNP coating leads to a decrease of the electron yield and mostly affects low energy electrons (<500 eV) emitted from GNPs.


Subject(s)
Electrons , Gold/chemistry , Metal Nanoparticles/chemistry , Monte Carlo Method , Polymers/chemistry , Protons , Radiation Dosage , Scattering, Radiation
2.
Phys Med Biol ; 64(6): 065014, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30731439

ABSTRACT

In protontherapy, it has been suggested that nanoparticles of high-Z material like gold (GNP) could be used as radiosensitizers. The origin of this enhancement phenomenon for proton radiation is not yet well understood and additional mechanistic insights are required. Previous works have highlighted the good capabilities of TRAX to reproduce secondary electron emission from gold material. Therefore, TRAX cross sections obtained with the binary encounter approximation (BEA) model for proton ionization were implemented within Geant4 for gold material. Based on the TRAX cross sections, improved Geant4 simulations have been developed to investigate the energy deposition and radical species production around a spherical gold nanoparticle (5 and 10 nm in diameter) placed in a water volume during proton irradiation. Simulations were performed for incident 2 MeV proton. The dose enhancement factor and the radiolysis enhancement factor were quantified. Results obtained with the BEA model were compared with results obtained with condensed-history models. Experimental irradiation of 200 nm gold films were performed to validate the secondary electron emission reproduction capabilities of physical models used in Monte Carlo (MC) simulations. TRAX simulations reproduced the experimental backscattered electron energy spectrum from gold film with better agreement than Geant4. Results on gold film obtained with the BEA model enabled to estimate the electron emission from GNPs. Results obtained in our study tend to support that the use of the BEA discrete model leads to a significant increase of the dose in the near vicinity of GNPs (<20 nm), while condensed history models used in Geant4 seem to overestimate the dose and the number of chemical species for increasing distances from the GNP. Based on discrete BEA model results, no enhancement effect due to secondary electron emitted from the GNP is expected if the GNP is not in close proximity to key cellular functional elements (DNA, mitochondria…).


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Monte Carlo Method , Phantoms, Imaging , Protons , Pulse Radiolysis , Radiation-Sensitizing Agents/chemistry , Humans , Radiotherapy , Radiotherapy Dosage
3.
Radiat Res ; 186(1): 27-38, 2016 07.
Article in English | MEDLINE | ID: mdl-27333083

ABSTRACT

UNLABELLED: Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. POPULATION: We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/µm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation scenarios.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/pathology , Extraterrestrial Environment , Models, Biological , Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/pathology , Breast Neoplasms/genetics , Cosmic Radiation/adverse effects , Humans , Incidence , Linear Energy Transfer , Mutation Rate , Neoplasms, Radiation-Induced/genetics , Relative Biological Effectiveness , Risk Assessment
4.
J Evol Biol ; 27(7): 1334-45, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25105197

ABSTRACT

The bdelloid rotifer lineage Adineta vaga inhabits temporary habitats subjected to frequent episodes of drought. The recently published draft sequence of the genome of A. vaga revealed a peculiar genomic structure incompatible with meiosis and suggesting that DNA damage induced by desiccation may have reshaped the genomic structure of these organisms. However, the causative link between DNA damage and desiccation has never been proven to date in rotifers. To test for the hypothesis that desiccation induces DNA double-strand breaks (DSBs), we developed a protocol allowing a high survival rate of desiccated A. vaga. Using pulsed-field gel electrophoresis to monitor genomic integrity, we followed the occurrence of DSBs in dried bdelloids and observed an accumulation of these breaks with time spent in dehydrated state. These DSBs are gradually repaired upon rehydration. Even when the genome was entirely shattered into small DNA fragments by proton radiation, A. vaga individuals were able to efficiently recover from desiccation and repair a large amount of DSBs. Interestingly, when investigating the influence of UV-A and UV-B exposure on the genomic integrity of desiccated bdelloids, we observed that these natural radiations also caused important DNA DSBs, suggesting that the genome is not protected during the desiccated stage but that the repair mechanisms are extremely efficient in these intriguing organisms.


Subject(s)
Biological Evolution , DNA Breaks, Double-Stranded , Gene Transfer, Horizontal , Rotifera/genetics , Animals , DNA Repair , Desiccation , Genome, Helminth , Reproduction , Rotifera/physiology , Rotifera/radiation effects , Ultraviolet Rays
5.
Phys Med Biol ; 58(18): 6495-510, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-24002468

ABSTRACT

We developed a Monte Carlo based computer program called MCSC (Monte Carlo Survival Curve) able to predict the survival fraction of cells irradiated in vitro with a broad beam of high linear energy transfer particles. Three types of cell responses are studied: the usual high dose response, the bystander effect and the low-dose hypersensitivity (HRS). The program models the broad beam irradiation and double strand break distribution following Poisson statistics. The progression of cells through the cell cycle is taken into account while the repair takes place. Input parameters are experimentally determined for A549 lung carcinoma cells irradiated with 10 and 20 keV µm(-1) protons, 115 keV µm(-1) alpha particles and for EAhy926 endothelial cells exposed to 115 keV µm(-1) alpha particles. Results of simulations are presented and compared with experimental survival curves obtained for A549 and EAhy296 cells. Results are in good agreement with experimental data for both cell lines and all irradiation protocols. The benefits of MCSC are several: the gain of time that would have been spent performing time-consuming clonogenic assays, the capacity to estimate survival fraction of cell lines not forming colonies and possibly the evaluation of radiosensitivity parameters of given individuals.


Subject(s)
Linear Energy Transfer , Lung Neoplasms/radiotherapy , Algorithms , Alpha Particles , Cell Line , Cell Line, Tumor , Computer Simulation , DNA Damage , DNA Repair , Dose-Response Relationship, Radiation , Histones/chemistry , Humans , Monte Carlo Method , Poisson Distribution , Protons , Radiation Tolerance , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...