Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur J Radiol ; 96: 12-20, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29103469

ABSTRACT

PURPOSE: To explore the value and reproducibility of a novel magnetic resonance based attenuation correction (MRAC) using a CAIPIRINHA-accelerated T1-weighted Dixon 3D-VIBE sequence for whole-body PET/MRI compared to the clinical standard. METHODS: The PET raw data of 19 patients from clinical routine were reconstructed with standard MRAC (MRACstd) and the novel MRAC (MRACcaipi), a prototype CAIPIRINHA accelerated Dixon 3D-VIBE sequence, both acquired in 19 s/bed position. Volume of interests (VOIs) for liver, lung and all voxels of the total image stack were created to calculate standardized uptake values (SUVmean) followed by inter-method agreement (Passing-Bablok regression, Bland-Altman analysis). A voxel-wise SUV comparison per patient was performed for intra-individual correlation between MRACstd and MRACcaipi. Difference images (MRACstd-MRACcaipi) of attenuation maps and SUV images were calculated. The image quality of in/opposed-phase water and fat images obtained from MRACcaipi was assessed by two readers on a 5-point Likert-scale including intra-class coefficients for inter-reader agreement. RESULTS: SUVmean correlations of VOIs demonstrated high linearity (0.95

Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Whole Body Imaging/methods , Workflow , Adult , Aged , Female , Humans , Male , Middle Aged , Reproducibility of Results
2.
PLoS One ; 12(8): e0183329, 2017.
Article in English | MEDLINE | ID: mdl-28817656

ABSTRACT

OBJECTIVES: Combined positron emission tomography (PET) and magnetic resonance imaging (MRI) targeting the prostate-specific membrane antigen (PSMA) with a 68Ga-labelled PSMA-analog (68Ga-PSMA-11) is discussed as a promising diagnostic method for patients with suspicion or history of prostate cancer. One potential drawback of this method are severe photopenic (halo-) artifacts surrounding the bladder and the kidneys in the scatter-corrected PET images, which have been reported to occur frequently in clinical practice. The goal of this work was to investigate the occurrence and impact of these artifacts and, secondly, to evaluate variants of the standard scatter correction method with regard to halo-artifact suppression. METHODS: Experiments using a dedicated pelvis phantom were conducted to investigate whether the halo-artifact is modality-, tracer-, and/or concentration-dependent. Furthermore, 31 patients with history of prostate cancer were selected from an ongoing 68Ga-PSMA-11-PET/MRI study. For each patient, PET raw data were reconstructed employing six different variants of PET scatter correction: absolute scatter scaling, relative scatter scaling, and relative scatter scaling combined with prompt gamma correction, each of which was combined with a maximum scatter fraction (MaxSF) of MaxSF = 75% or MaxSF = 40%. Evaluation of the reconstructed images with regard to halo-artifact suppression was performed both quantitatively using statistical analysis and qualitatively by two independent readers. RESULTS: The phantom experiments did not reveal any modality-dependency (PET/MRI vs. PET/CT) or tracer-dependency (68Ga vs. 18F-FDG). Patient- and phantom-based data indicated that halo-artifacts derive from high organ-to-background activity ratios (OBR) between bladder/kidneys and surrounding soft tissue, with a positive correlation between OBR and halo size. Comparing different variants of scatter correction, reducing the maximum scatter fraction from the default value MaxSF = 75% to MaxSF = 40% was found to efficiently suppress halo-artifacts in both phantom and patient data. In 1 of 31 patients, reducing the maximum scatter fraction provided new PET-based information changing the patient's diagnosis. CONCLUSION: Halo-artifacts are particularly observed for 68Ga-PSMA-11-PET/MRI due to 1) the biodistribution of the PSMA-11-tracer resulting in large OBRs for bladder and kidneys and 2) inaccurate scatter correction methods currently used in clinical routine, which tend to overestimate the scatter contribution. If not compensated for, 68Ga-PSMA-11 uptake pathologies may be masked by halo-artifacts leading to false-negative diagnoses. Reducing the maximum scatter fraction was found to efficiently suppress halo-artifacts.


Subject(s)
Artifacts , Galium/chemistry , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Male , Middle Aged
3.
EJNMMI Phys ; 4(1): 12, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28251575

ABSTRACT

BACKGROUND: Accurate PET quantification demands attenuation correction (AC) for both patient and hardware attenuation of the 511 keV annihilation photons. In hybrid PET/MR imaging, AC for stationary hardware components such as patient table and MR head coil is straightforward, employing CT-derived attenuation templates. AC for flexible hardware components such as MR-safe headphones and MR radiofrequency (RF) surface coils is more challenging. Registration-based approaches, aligning CT-based attenuation templates with the current patient position, have been proposed but are not used in clinical routine. Ignoring headphone or RF coil attenuation has been shown to result in regional activity underestimation values of up to 18%. We propose to employ the maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm to estimate the attenuation of flexible hardware components. Starting with an initial attenuation map not including flexible hardware components, the attenuation update of MLAA is applied outside the body outline only, allowing to estimate hardware attenuation without modifying the patient attenuation map. Appropriate prior expectations on the attenuation coefficients are incorporated into MLAA. The proposed method is investigated for non-TOF PET phantom and 18F-FDG patient data acquired with a clinical PET/MR device, using headphones or RF surface coils as flexible hardware components. RESULTS: Although MLAA cannot recover the exact physical shape of the hardware attenuation maps, the overall attenuation of the hardware components is accurately estimated. Therefore, the proposed algorithm significantly improves PET quantification. Using the phantom data, local activity underestimation when neglecting hardware attenuation was reduced from up to 25% to less than 3% under- or overestimation as compared to reference scans without hardware present or to CT-derived AC. For the patient data, we found an average activity underestimation of 7.9% evaluated in the full brain and of 6.1% for the abdominal region comparing the uncorrected case with MLAA. CONCLUSIONS: MLAA is able to provide accurate estimations of the attenuation of flexible hardware components and can therefore be used to significantly improve PET quantification. The proposed approach can be readily incorporated into clinical workflow.

4.
Magn Reson Med ; 77(3): 1170-1183, 2017 03.
Article in English | MEDLINE | ID: mdl-26991911

ABSTRACT

PURPOSE: To develop four-dimensional (4D) respiratory time-resolved MRI based on free-breathing acquisition of radial MR data with very high undersampling. METHODS: We propose the 4D joint motion-compensated high-dimensional total variation (4D joint MoCo-HDTV) algorithm, which alternates between motion-compensated image reconstruction and artifact-robust motion estimation at multiple resolution levels. The algorithm is applied to radial MR data of the thorax and upper abdomen of 12 free-breathing subjects with acquisition times between 37 and 41 s and undersampling factors of 16.8. Resulting images are compared with compressed sensing-based 4D motion-adaptive spatio-temporal regularization (MASTeR) and 4D high-dimensional total variation (HDTV) reconstructions. RESULTS: For all subjects, 4D joint MoCo-HDTV achieves higher similarity in terms of normalized mutual information and cross-correlation than 4D MASTeR and 4D HDTV when compared with reference 4D gated gridding reconstructions with 8.4 ± 1.1 times longer acquisition times. In a qualitative assessment of artifact level and image sharpness by two radiologists, 4D joint MoCo-HDTV reveals higher scores (P < 0.05) than 4D HDTV and 4D MASTeR at the same undersampling factor and the reference 4D gated gridding reconstructions, respectively. CONCLUSIONS: 4D joint MoCo-HDTV enables time-resolved image reconstruction of free-breathing radial MR data with undersampling factors of 16.8 while achieving low-streak artifact levels and high image sharpness. Magn Reson Med 77:1170-1183, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Artifacts , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pulmonary Fibrosis/diagnostic imaging , Respiratory-Gated Imaging Techniques/methods , Adult , Aged , Algorithms , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Motion , Reproducibility of Results , Respiratory Mechanics , Sample Size , Sensitivity and Specificity
5.
Eur J Nucl Med Mol Imaging ; 44(5): 776-787, 2017 May.
Article in English | MEDLINE | ID: mdl-27988802

ABSTRACT

PURPOSE: The positron emission tomography (PET) tracer 68Ga-PSMA-11, targeting the prostate-specific membrane antigen (PSMA), is rapidly excreted into the urinary tract. This leads to significant radioactivity in the bladder, which may limit the PET-detection of local recurrence (LR) of prostate cancer (PC) after radical prostatectomy (RP), developing in close proximity to the bladder. Here, we analyze if there is additional value of multi-parametric magnetic resonance imaging (mpMRI) compared to the 68Ga-PSMA-11-PET-component of PET/CT or PET/MRI to detect LR. METHODS: One hundred and nineteen patients with biochemical recurrence after prior RP underwent both hybrid 68Ga-PSMA-11-PET/CTlow-dose (1 h p.i.) and -PET/MRI (2-3 h p.i.) including a mpMRI protocol of the prostatic bed. The comparison of both methods was restricted to the abdomen with focus on LR (McNemar). Bladder-LR distance and recurrence size were measured in axial T2w-TSE. A logistic regression was performed to determine the influence of these variables on detectability in 68Ga-PSMA-11-PET. Standardized-uptake-value (SUVmean) quantification of LR was performed. RESULTS: There were 93/119 patients that had at least one pathologic finding. In addition, 18/119 Patients (15.1%) were diagnosed with a LR in mpMRI of PET/MRI but only nine were PET-positive in PET/CT and PET/MRI. This mismatch was statistically significant (p = 0.004). Detection of LR using the PET-component was significantly influenced by proximity to the bladder (p = 0.028). The PET-pattern of LR-uptake was classified into three types (1): separated from bladder; (2): fuses with bladder, and (3): obliterated by bladder). The size of LRs did not affect PET-detectability (p = 0.84), mean size was 1.7 ± 0.69 cm long axis, 1.2 ± 0.46 cm short-axis. SUVmean in nine men was 8.7 ± 3.7 (PET/CT) and 7.0 ± 4.2 (PET/MRI) but could not be quantified in the remaining nine cases (obliterated by bladder). CONCLUSION: The present study demonstrates additional value of hybrid 68Ga-PSMA-11-PET/MRI by gaining complementary diagnostic information compared to the 68Ga-PSMA-11-PET/CTlow-dose for patients with LR of PC.


Subject(s)
Magnetic Resonance Imaging , Multimodal Imaging/methods , Organometallic Compounds , Positron Emission Tomography Computed Tomography , Prostatectomy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Edetic Acid/analogs & derivatives , False Negative Reactions , Gallium Isotopes , Gallium Radioisotopes , Humans , Male , Neoplasm Recurrence, Local , Oligopeptides , Prostatic Neoplasms/surgery , Retrospective Studies , Risk
6.
Med Phys ; 43(12): 6234, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27908174

ABSTRACT

PURPOSE: Positron emission tomography (PET) of the thorax region is impaired by respiratory patient motion. To account for motion, the authors propose a new method for PET/magnetic resonance (MR) respiratory motion compensation (MoCo), which uses highly undersampled MR data with acquisition times as short as 1 min/bed. METHODS: The proposed PET/MR MoCo method (4D jMoCo PET) uses radial MR data to estimate the respiratory patient motion employing MR joint motion estimation and image reconstruction with temporal median filtering. Resulting motion vector fields are incorporated into the system matrix of the PET reconstruction. The proposed approach is evaluated for the thorax region utilizing a PET/MR simulation with 1 min MR acquisition time and simultaneous PET/MR measurements of six patients with MR acquisition times of 1 and 5 min and radial undersampling factors of 11.2 and 2.2, respectively. Reconstruction results are compared to 3D PET, 4D gated PET and a standard MoCo method (4D sMoCo PET), which performs iterative image reconstruction and motion estimation sequentially. Quantitative analysis comprises the parameters SUVmean, SUVmax, full width at half-maximum/lesion volume, contrast and signal-to-noise ratio. RESULTS: For simulated PET data, our quantitative analysis shows that the proposed 4D jMoCo PET approach with temporal filtering achieves the best quantification accuracy of all tested reconstruction methods with a mean absolute deviation of 2.3% when compared to the ground truth. For measured PET patient data, the mean absolute deviation of 4D jMoCo PET using a 1 min MR acquisition for motion estimation is 2.1% relative to the 5 min MR acquisition. This demonstrates a robust behavior even in case of strong undersampling at MR acquisition times as short as 1 min. In contrast, 4D sMoCo PET shows considerable reduction of quantification accuracy for the 1 min MR acquisition time. Relative to 3D PET, the proposed 4D jMoCo PET approach with temporal filtering yields an average increase of SUVmean, SUVmax, and contrast of 29.9% and 13.8% for simulated and measured PET data, respectively. CONCLUSIONS: Employing artifact-robust motion estimation enables PET/MR respiratory MoCo with MR acquisition times as short as 1 min/bed improving PET image quality and quantification accuracy.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Movement , Multimodal Imaging , Positron-Emission Tomography , Respiration , Adult , Aged , Aged, 80 and over , Artifacts , Female , Humans , Male , Middle Aged , Signal-To-Noise Ratio
9.
Med Phys ; 41(2): 021906, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24506627

ABSTRACT

PURPOSE: Image quality in computed tomography (CT) often suffers from artifacts which may reduce the diagnostic value of the image. In many cases, these artifacts result from missing or corrupt regions in the projection data, e.g., in the case of metal, truncation, and limited angle artifacts. The authors propose a generalized correction method for different kinds of artifacts resulting from missing or corrupt data by making use of available prior knowledge to perform data completion. METHODS: The proposed prior-based artifact correction (PBAC) method requires prior knowledge in form of a planning CT of the same patient or in form of a CT scan of a different patient showing the same body region. In both cases, the prior image is registered to the patient image using a deformable transformation. The registered prior is forward projected and data completion of the patient projections is performed using smooth sinogram inpainting. The obtained projection data are used to reconstruct the corrected image. RESULTS: The authors investigate metal and truncation artifacts in patient data sets acquired with a clinical CT and limited angle artifacts in an anthropomorphic head phantom data set acquired with a gantry-based flat detector CT device. In all cases, the corrected images obtained by PBAC are nearly artifact-free. Compared to conventional correction methods, PBAC achieves better artifact suppression while preserving the patient-specific anatomy at the same time. Further, the authors show that prominent anatomical details in the prior image seem to have only minor impact on the correction result. CONCLUSIONS: The results show that PBAC has the potential to effectively correct for metal, truncation, and limited angle artifacts if adequate prior data are available. Since the proposed method makes use of a generalized algorithm, PBAC may also be applicable to other artifacts resulting from missing or corrupt data.


Subject(s)
Artifacts , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Humans , Metals , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...