Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2730, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177735

ABSTRACT

We present a novel x-ray lithography based micromanufacturing methodology that offers scalable manufacturing of high precision optical components. It is accomplished through simultaneous usage of multiple stencil masks made moveable with respect to one another through custom made micromotion stages. The range of spectral flux reaching the sample surface at the LiMiNT micro/nanomanufacturing facility of Singapore Synchrotron Light Source (SSLS) is about 2 keV to 10 keV, offering substantial photon energy to carry out deep x-ray lithography. In this energy range, x-rays penetrate through resist materials with only little scattering. The highly collimated rectangular beam architecture of the x-ray source enables a full 4″ wafer scale fabrication. Precise control of dose deposited offers determined chain scission in the polymer to required depth enabling 1800 discrete gray levels in a chip of area 20 mm2 and with more than 2000 within our reach. Due to its parallel processing capability, our methodology serves as a promising candidate to fabricate micro/nano components of optical quality on a large scale to cater for industrial requirements. Usage of these fine components in analytical devices such as spectrometers and multispectral imagers transforms their architecture and shrinks their size to pocket dimension. It also reduces their complexity and increases affordability while also expanding their application areas. Consequently, equipment based on these devices is made available and affordable for consumers and businesses expanding the horizon of analytical applications. Mass manufacturing is especially vital when these devices are to be sold in large quantities especially as components for original equipment manufacturers (OEM), which has also been demonstrated through our work. Furthermore, we also substantially improve the quality of the micro-components fabricated, 3D architecture generated, throughput, capability and availability for industrial application. Manufacturing 1800 Gray levels or more through other competing techniques is either limited due to multiple process steps involved or due to unacceptably long time required owing to their pencil beam architecture. Our manufacturing technique presented here overcomes both these shortcomings in terms of the maximum number of gray levels that can be generated, and the time required to generate the same.

2.
Opt Express ; 28(9): 12936-12950, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403779

ABSTRACT

Transmissive dielectric wire grid polarizers tuned to 4.43 eV (Mg II line, 280 nm), an important diagnostic line for solar physics, are presented in this communication. The polarizers are based on TiO2 gratings and designed with a period of ∼140 nm (7143 lines/mm), 40 nm line width (duty cycle of 0.286), and 100 nm line height. Several gratings are fabricated through electron beam lithography combined with reactive ion etching, whereby two parameters in the nanofabrication process are explored: e-beam dosage on the photoresist and TiO2 etching time. Polarization of samples is optically characterized using a spectroscopic ellipsometer in transmission mode, achieving the best result with an extinction ratio of ∼109 and a transmittance of 16.4% at the target energy of 4.43 eV. The shape of the gratings is characterized through atomic force microscopy (AFM) and scanning electron microscopy (SEM); the measured AFM profiles are distorted by the tip geometry, hence a simple deconvolution procedure is implemented to retrieve the real profile. By analysing the AFM and SEM profiles, we find that the real shapes of the different gratings are close to the design, but with a larger duty cycle than the intended value. With the real grating geometry, an improved model of the best sample was built with a finite-difference time-domain (FDTD) method that matches the result obtained through optical characterization.

3.
Opt Express ; 19(13): 12628-33, 2011 Jun 20.
Article in English | MEDLINE | ID: mdl-21716503

ABSTRACT

Multichannel Fourier transform interferometry to measure the spectrum of arbitrarily short pulses and of fast time-varying signals was achieved using a micro/nanomanufactured multimirror array. We describe the performance of a demonstrator FTIR that works in the mid-infrared (MIR) range of 700-1400 cm(-1) and reaches a spectral resolution of 10 cm(-1) taking into account apodization. Spectral measurements down to pulse lengths of 319 µs were carried out using a mechanical camera shutter. Arbitrarily short pulses are expected feasible provided the source can deliver enough photons to overcome the noise equivalent number of photons.


Subject(s)
Interferometry/methods , Spectrophotometry, Infrared/methods , Equipment Design , Fourier Analysis , Models, Theoretical
4.
Opt Express ; 17(26): 23914-9, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20052102

ABSTRACT

Modern metamaterials face functional constraints as they are commonly embedded in or deposited on dielectric materials. We provide a new solution by microfabricating a completely free-standing all-metal self-supported metamaterial. Using upright S-string architecture with the distinctive feature of metallic transverse interconnects, we form a locally stiff, globally flexible space-grid. Infrared Fourier transform interferometry reveals the typical double-peak structure of a magnetically excited left-handed and an electrically excited right-handed pass-band that is maintained under strong bending and heating, and is sensitive to dielectrics. Exploiting UV/X-ray lithography and ultimately plastic moulding, meta-foils can be mass manufactured cost-effectively to serve as optical elements.


Subject(s)
Manufactured Materials/analysis , Metals/chemistry , Light , Materials Testing , Scattering, Radiation , Terahertz Radiation
5.
Opt Express ; 16(18): 13773-80, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18772988

ABSTRACT

Using micromanufactured S-shaped gold strings suspended in free space by means of window-frames, we experimentally demonstrate an electromagnetic meta-material (EM(3)) in which the metallic structures are no longer embedded in matrices or deposited on substrates such that the response is solely determined by the geometrical parameters and the properties of the metal. Two carefully aligned and assembled window-frames form a bi-layer chip that exhibits 2D left-handed pass-bands corresponding to two different magnetic resonant loops in the range of 1.4 to 2.2 THz as characterized by Fourier transform interferometry and numerical simulation. Chips have a comparably large useful area of 56 mm(2). Our results are a step towards providing EM(3) that fulfill the common notions of a material.


Subject(s)
Gold/chemistry , Manufactured Materials , Microwaves , Electromagnetic Fields , Infrared Rays , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...