Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38399778

ABSTRACT

Phage therapy is still in its infancy, but it is increasingly promising as a future alternative for treating antibiotic-resistant bacteria. To investigate the effect of phages on Mycobacterium abscessus complex (MABC), we isolated 113 environmental phages, grown them to high titres, and assayed them on MABC clinical strains through the spot test. Of all the phages, only 16 showed killing activity. Their activity was so temperate to MABC that they could not generate any plaque-forming units (PFUs). The Appelmans method of directed evolution was carried out to evolve these 16 phages into more lytic ones. After only 11 of 30 rounds of evolution, every single clinical strain in our collection, including those that were unsusceptible up to this point, could be lysed by at least one phage. The evolved phages were able to form PFUs on the clinical strains tested. Still, they are temperate at best and require further training. The genomes of one random parental phage and three random evolved phages from Round 13 were sequenced, revealing a diversity of clusters and genes of a variety of evolutionary origins, mostly of unknown function. These complete annotated genomes will be key for future molecular characterisations.

2.
J Nanobiotechnology ; 18(1): 181, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317574

ABSTRACT

Microtubules and carbon nanotubes (CNTs), and more particularly multi-walled CNTs (MWCNTs), share many mechanical and morphological similarities that prompt their association into biosynthetic tubulin filaments both, in vitro and in vivo. Unlike CNTs, microtubules are highly dynamic protein polymers that, upon interaction with these nanomaterials, display enhanced stability that has critical consequences at the cellular level. Among others, CNTs prompt ectopic (acentrosomal) microtubule nucleation and the disassembly of the centrosome, causing a dramatic cytoskeletal reorganization. These changes in the microtubule pattern trigger the generation of ineffective biomechanical forces that result in migration defects, and ultimately in spindle-assembly checkpoint (SAC) blockage and apoptosis. In this review, we describe the molecular mechanism involved in the intrinsic interference of CNTs with the microtubule dynamics and illustrate the consequences of this effect on cell biomechanics. We also discuss the potential application of these synthetic microtubule-stabilizing agents as synergetic agents to boost the effect of classical chemotherapy that includes spindle poisons (i.e. paclitaxel) or DNA interfering agents (5-fluorouracil)-, and list some of the advantages of the use of MWCNTs as adjuvant agents in preventing cell resistance to chemotherapy.


Subject(s)
Cytoskeleton/drug effects , Cytoskeleton/metabolism , Microtubules/drug effects , Microtubules/metabolism , Neoplasms/drug therapy , Apoptosis , Cell Cycle/drug effects , Centrosome/metabolism , Cytoskeleton/ultrastructure , Humans , Microtubules/ultrastructure , Nanotubes, Carbon , Paclitaxel/pharmacology , Phenotype , Tubulin
SELECTION OF CITATIONS
SEARCH DETAIL
...