Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PLoS One ; 12(4): e0175491, 2017.
Article in English | MEDLINE | ID: mdl-28419112

ABSTRACT

Periods of high or fluctuating seawater temperatures result in several physiological challenges for farmed salmonids, including an increased prevalence and severity of cataracts. The aim of the present study was to compare cataractogenesis in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss) reared at two temperatures, and investigate whether temperature influences lens metabolism and cataract development. Atlantic salmon (101±2 g) and rainbow trout (125±3 g) were reared in seawater at either 13°C (optimum for growth) or 19°C during the 35 days experiment (n = 4 tanks for each treatment). At the end of the experiment, the prevalence of cataracts was nearly 100% for Atlantic salmon compared to ~50% for rainbow trout, irrespective of temperature. The severity of the cataracts, as evaluated by slit-lamp inspection of the lens, was almost three fold higher in Atlantic salmon compared to rainbow trout. The global metabolic profile revealed differences in lens composition and metabolism between the two species, which may explain the observed differences in cataract susceptibility between the species. The largest differences were seen in the metabolism of amino acids, especially the histidine metabolism, and this was confirmed by a separate quantitative analysis. The global metabolic profile showed temperature dependent differences in the lens carbohydrate metabolism, osmoregulation and redox homeostasis. The results from the present study give new insight in cataractogenesis in Atlantic salmon and rainbow trout reared at high temperature, in addition to identifying metabolic markers for cataract development.


Subject(s)
Cataract/metabolism , Fish Diseases/metabolism , Lens, Crystalline/metabolism , Metabolomics/methods , Oncorhynchus mykiss/metabolism , Salmo salar/metabolism , Amino Acids/metabolism , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Carbohydrate Metabolism , Cataract/pathology , Fish Diseases/pathology , Glutathione/metabolism , Histidine/analogs & derivatives , Histidine/metabolism , Homeostasis , Hot Temperature , Osmoregulation , Oxidation-Reduction , Seawater , Severity of Illness Index , Species Specificity , Temperature
2.
J Therm Biol ; 57: 21-34, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27033036

ABSTRACT

An emerging focus in environmental toxicology is how climate change will alter bioavailability and uptake of contaminants in organisms. Ectothermic animals unable to adjust their temperature by local migration, such as farmed fish kept in net pens, may become more vulnerable to contaminants in warmer seas. The aim of this work was to study cadmium (Cd) toxicity in cells obtained from fish acclimated to sub-optimal growth temperature. Atlantic salmon hepatocytes, harvested from fish pre-acclimated either at 15°C (optimal growth temperature) or 20°C (heat-stressed), were exposed in vitro to two concentrations of Cd (control, 1 and 100µM Cd) for 48h. Cd-induced cytotoxicity, determined with the xCELLigence system, was more pronounced in cells from fish pre-acclimated to a high temperature than in cells from fish grown at optimal temperature. A feed spiked with antioxidants could not ameliorate the Cd-induced cytotoxicity in cells from temperature-stressed fish. At the transcriptional level, Cd exposure affected 11 out of 20 examined genes, of which most are linked to oxidative stress. The transcriptional levels of a majority of the altered genes were changed in cells harvested from fish grown at sub-optimal temperature. Interaction effects between Cd exposure and fish pre-acclimation temperature were seen for four transcripts, hmox1, mapk1, fth1 and mmp13. Overall, this study shows that cells from temperature-stressed fish are modestly more vulnerable to Cd stress, and indicate that mechanisms linked to oxidative stress may be differentially affected in temperature-stressed cells.


Subject(s)
Acclimatization , Cadmium/toxicity , Heat-Shock Response , Hepatocytes/physiology , Salmo salar/physiology , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Transcriptome
3.
Biol Trace Elem Res ; 174(1): 226-239, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27094051

ABSTRACT

Global warming may alter the bioavailability of contaminants in aquatic environments. In this work, mercury (Hg2+) toxicity was studied in cells obtained from Atlantic salmon smolt kept at 15 °C (optimal growth temperature) for 3 months or at a stepwise increase to 20 °C (temperature-stress) during 3 months prior to cell harvest to evaluate whether acclimation temperature affects Hg toxicity. To examine possible altered dietary requirements in warmer seas, one group of fish following the stepwise temperature regimes was fed a diet spiked with antioxidants. Atlantic salmon hepatocytes were exposed in vitro to 0, 1.0, or 100 µM Hg2+ for 48 h. Cytotoxicity, determined as electrical impedance changes with the xCELLigence system, and transcriptional responses, determined with RT-qPCR, were assessed as measures of toxicity. The results showed that inorganic Hg at a concentration up to 100 µM is not cytotoxic to Atlantic salmon hepatocytes. Significance and directional responses of the 18 evaluated target genes suggest that both Hg and temperature stress affected the transcription of genes encoding proteins involved in the protection against ROS-generated oxidative stress. Both stressors also affected the transcription of genes linked to lipid metabolism. Spiking the diet with antioxidants resulted in higher concentrations of Se and vitamin C and reduced concentration of Hg in the liver in vivo, but no interactions were seen between the dietary supplementation of antioxidants and Hg toxicity in vitro. In conclusion, no evidence was found suggesting that inorganic Hg is more toxic in cells harvested from temperature-stressed fish.


Subject(s)
Fish Proteins/biosynthesis , Gene Expression Regulation/drug effects , Heat-Shock Response/drug effects , Hepatocytes/metabolism , Mercury/toxicity , Salmo salar/metabolism , Animals , Cells, Cultured
4.
Toxicol In Vitro ; 30(1 Pt B): 492-505, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26368670

ABSTRACT

To speed up sedimentation of suspended solids the mining industry often uses flocculent chemicals. In this work we evaluated the cytotoxic and mechanistic effects of Polydadmac, and its basic component Dadmac, on fish cells. Dose-response effects, temperature-dependent effects and impact of Dadmac and Polydadmac on Cu toxicity were studied in Atlantic salmon hepatocytes. We used the xCELLigence system and the MTT test for cytotoxicity assessments, and real-time RT-qPCR to evaluate molecular effects. The results showed a cytotoxic response for Polydadmac but not for Dadmac. Elevated levels of Cu were cytotoxic. Moderately cytotoxic concentrations of Cu (100-1000 µM) induced significant responses on the transcription of a number of genes in the cells, i.e. cuznsod (sod1), cat, mnsod (sod2), nfe2l2, hmox1, mta, casp3b, casp6, bclx, cyp1a, ccs, atp7a, app, mmp13, esr1, ppara, fads2 and ptgs2. A factorial PLS regression model for mnsod transcription showed a synergistic effect between Dadmac and Cu exposure in the cells, indicating an interaction effect between Dadmac and Cu on mitochondrial ROS scavenging. No interaction effects were seen for Polydadmac on Cu toxicity. In conclusion, Polydadmac is cytotoxic at elevated concentrations but appears to have low ability to interfere with Cu toxicity in Atlantic salmon liver cells.


Subject(s)
Copper/toxicity , Hepatocytes/drug effects , Mining , Polyethylenes/toxicity , Quaternary Ammonium Compounds/toxicity , Acclimatization , Animals , Dose-Response Relationship, Drug , Male , Salmo salar , Temperature
5.
Article in English | MEDLINE | ID: mdl-26144599

ABSTRACT

A comparative experiment with Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) postsmolts was conducted over 35 days to provide insight into how growth, respiration, energy metabolism and the growth hormone (GH) and insulin-like growth factor 1 (IGF-1) system are regulated at elevated sea temperatures. Rainbow trout grew better than Atlantic salmon, and did not show reduced growth at 19 °C. Rainbow trout kept at 19 °C had increased blood hemoglobin concentration compared to rainbow trout kept at 13 °C, while salmon did not show the same hemoglobin response due to increased temperature. Both species showed reduced length growth and decreased muscle glycogen stores at 19 °C. Circulating IGF-1 concentration was higher in rainbow trout than in Atlantic salmon, but was not affected by temperature in either species. Plasma IGF-binding protein 1b (IGFBP-1b) concentration was reduced in Atlantic salmon reared at 19 °C after 15 days but increased in rainbow trout at 19 °C after 35 days. The igfbp1b mRNA level in liver showed a positive correlation to plasma concentrations of glucose and IGFBP-1b, suggesting involvement of this binding protein in carbohydrate metabolism at 19 °C. At this temperature muscle igfbp1a mRNA was down-regulated in both species. The muscle expression of this binding protein correlated negatively with muscle igf1 and length growth. The plasma IGFBP-1b concentration and igfbp1b and igfbp1a expression suggests reduced muscle igf1 signaling at elevated temperature leading to glucose allostasis, and that time course is species specific due to higher thermal tolerance in rainbow trout.


Subject(s)
Fish Proteins/physiology , Growth Hormone/physiology , Insulin-Like Growth Factor I/physiology , Oncorhynchus mykiss/growth & development , Salmo salar/growth & development , Temperature , Animals , Fish Proteins/blood , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Immunoassay , Insulin-Like Growth Factor Binding Protein 1/blood , Insulin-Like Growth Factor Binding Protein 1/classification , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Oncorhynchus mykiss/blood , Oncorhynchus mykiss/genetics , Phylogeny , Receptors, Somatotropin/blood , Receptors, Somatotropin/genetics , Reverse Transcriptase Polymerase Chain Reaction , Salmo salar/blood , Salmo salar/genetics , Time Factors , Water
6.
Article in English | MEDLINE | ID: mdl-25960447

ABSTRACT

In salmon plasma/serum, three major insulin-like growth factor binding proteins (IGFBPs) are consistently detected at 22-, 28- and 41-kDa. The 22-kDa form has been identified as IGFBP-1b and shown to increase under catabolic conditions. We developed a competitive time-resolved fluoroimmunoassay (TR-FIA) for salmon IGFBP-1b. Purified salmon IGFBP-1b was used for biotin-labeling, assay standard and antiserum production. The TR-FIA did not cross-react with the 41-kDa form (IGFBP-2b) but showed 3% cross-reactivity with the 28-kDa form (IGFBP-1a). It measured IGFBP-1b levels as low as 0.4 ng/ml, and ED80 and ED20 were 0.9 and 24.6 ng/ml, respectively. There appears to be little interference by IGF-I. Using the TR-FIA, serum IGFBP-1b levels were measured in individually-tagged underyearling masu salmon fed or fasted for 5 weeks, or fasted for 3 weeks followed by refeeding for 2 weeks. Fasting for 3 weeks significantly increased circulating IGFBP-1b levels, while it returned to the basal levels after prolonged fasting for additional 2 weeks. Serum IGFBP-1b level negatively correlated with body weight, condition factor, specific growth rate and serum IGF-I level. During parr-smolt transformation of masu salmon, average circulating IGFBP-1b levels were the highest in May. There was a positive correlation between serum IGFBP-1b and IGF-I, which is in contrast to that in the fasting/feeding experiment. IGFBP-1b also showed a positive relationship with gill Na(+), K(+)-ATPase activity. These results suggest that the relationship between circulating IGFBP-1b and IGF-I during smoltification differs from that during fasting and IGFBP-1b may play a role in the development of hypoosmoregulatory ability.


Subject(s)
Fluorescent Antibody Technique/methods , Insulin-Like Growth Factor Binding Protein 1/blood , Animals , Blotting, Western , Salmon , Time Factors
7.
BMC Physiol ; 14: 2, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24581386

ABSTRACT

BACKGROUND: Atlantic salmon aquaculture operations in the Northern hemisphere experience large seasonal fluctuations in seawater temperature. With summer temperatures often peaking around 18-20°C there is growing concern about the effects on fish health and performance. Since the heart has a major role in the physiological plasticity and acclimation to different thermal conditions in fish, we wanted to investigate how three and eight weeks exposure of adult Atlantic salmon to 19°C, previously shown to significantly reduce growth performance, affected expression of relevant genes and proteins in cardiac tissues under experimental conditions. RESULTS: Transcriptional responses in cardiac tissues after three and eight weeks exposure to 19°C (compared to thermal preference, 14°C) were analyzed with cDNA microarrays and validated by expression analysis of selected genes and proteins using real-time qPCR and immunofluorescence microscopy. Up-regulation of heat shock proteins and cell signaling genes may indicate involvement of the unfolded protein response in long-term acclimation to elevated temperature. Increased immunofluorescence staining of inducible nitric oxide synthase in spongy and compact myocardium as well as increased staining of vascular endothelial growth factor in epicardium could reflect induced vascularization and vasodilation, possibly related to increased oxygen demand. Increased staining of collagen I in the compact myocardium of 19°C fish may be indicative of a remodeling of connective tissue with long-term warm acclimation. Finally, higher abundance of transcripts for genes involved in innate cellular immunity and lower abundance of transcripts for humoral immune components implied altered immune competence in response to elevated temperature. CONCLUSIONS: Long-term exposure of Atlantic salmon to 19°C resulted in cardiac gene and protein expression changes indicating that the unfolded protein response, vascularization, remodeling of connective tissue and altered innate immune responses were part of the cardiac acclimation or response to elevated temperature.


Subject(s)
Gene Expression , Myocardium/metabolism , Salmon/metabolism , Temperature , Animals , Oligonucleotide Array Sequence Analysis , Salmon/genetics , Seawater
8.
BMC Genomics ; 14: 817, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24261939

ABSTRACT

BACKGROUND: Warmer seawater as a result of climate change may impose environmental challenges for Atlantic salmon aquaculture in its southernmost geographic range. Seawater temperatures above optimal level for growth may be reached in the warmest summer weeks. Caged fish can experience temperature and low oxygen saturation stress during such episodes, raising fish welfare and productivity concerns. In this work we compare the transcriptional responses in Atlantic salmon exposed to chronic high temperature (19°C) and low oxygen saturation (4-5 mg/L) stress. RESULTS: We used next-generation sequencing and RT-qPCR to screen for effects, and focused on growth regulation and oxidative stress in fish exposed to sub-optimal conditions. Both prolonged temperature (45 days) and low oxygen (120 days) stress had a significant negative effect on growth. The main effect of heat stress appears to be a general reduced transcriptional rate in salmon liver, while mechanisms typically associated with responses induced by chemical drugs were stimulated. Heat stress significantly down-regulated several transcripts encoding proteins involved in the protection against oxidative stress, including CuZn SOD, Mn SOD, GPx1 and GR, as well as additional stress markers HIF1A, CYP1A, MTOR and PSMC2 (RT-qPCR data). In salmon held at low oxygen concentration for four months protein ubiquitination (protein catabolism) was the most strongly affected pathway. According to the RT-qPCR data, low oxygen stress significantly up-regulated the transcriptional levels of IGFBP1B and down-regulated the levels of GR. Pathway analysis suggests that high temperature and low oxygen saturation stress affects many similar mechanisms in Atlantic salmon. Based on the gene lists, six out of the top ten predicted upstream transcriptional regulators, 1,2-dithiol-3-thione sirolimus, CD437, 5-fluorouracil, HNF4A and NFE2L2, were similar between the two treatments. CONCLUSIONS: In conclusion, temperature and low oxygen saturation stress affect many identical mechanisms in liver cells resulting in a metabolic depression, but these effects are not necessarily mediated through altered transcription of the same genes.


Subject(s)
Fish Proteins/genetics , Heat-Shock Response , Hypoxia/metabolism , Salmo salar/genetics , Transcriptome , Adaptation, Physiological/genetics , Animals , Fish Proteins/metabolism , Gene Expression Regulation , Gene Ontology , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Hypoxia/genetics , Molecular Sequence Annotation , Real-Time Polymerase Chain Reaction , Salmo salar/growth & development , Salmo salar/metabolism , Sequence Analysis, DNA , Transcription, Genetic
9.
J Comp Physiol B ; 183(2): 243-59, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22991175

ABSTRACT

Growth regulation in adult Atlantic salmon (1.6 kg) was investigated during 45 days in seawater at 13, 15, 17, and 19 °C. We focused on feed intake, nutrient uptake, nutrient utilization, and endocrine regulation through growth hormone (GH), insulin-like growth factors (IGF), and IGF-binding proteins (IGFBP). During prolonged thermal exposure, salmon reduced feed intake and growth. Feed utilization was reduced at 19 °C after 45 days compared with fish at lower temperatures, and body lipid storage was depleted with increasing water temperature. Although plasma IGF-1 concentrations did not change, 32-Da and 43-kDa IGFBP increased in fish reared at ≤17 °C, and dropped in fish reared at 19 °C. Muscle igf1 mRNA levels were reduced at 15 and 45 days in fish reared at 15, 17, and 19 °C. Muscle igf2 mRNA levels did not change after 15 days in response to increasing temperature, but were reduced after 45 days. Although liver igf2 mRNA levels were reduced with increasing temperatures after 15 and 45 days, temperature had no effect on igf1 mRNA levels. The liver igfbp2b mRNA level, which corresponds to circulating 43-kDa IGFBP, exhibited similar responses after 45 days. IGFBP of 23 kDa was only detected in plasma in fish reared at 17 °C, and up-regulation of the corresponding igfbp1b gene indicated a time-dependent catabolic response, which was not observed in fish reared at 19 °C. However, higher muscle ghr mRNA levels were detected in fish at 17 and 19 °C than in fish at lower temperatures, indicating lipolytic regulation in muscle. These results show that the reduction of muscle growth in large salmon is mediated by decreased igf1 and igf2 mRNA levels in addition to GH-associated lipolytic action to cope with prolonged thermal exposure. Accordingly, 13 °C appears to be a more optimal temperature for the growth of adult Atlantic salmon at sea.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Growth Hormone/metabolism , Lipolysis/physiology , Muscle, Skeletal/growth & development , Salmo salar/growth & development , Somatomedins/metabolism , Temperature , Analysis of Variance , Animals , Blotting, Western , DNA Primers/genetics , Fluoroimmunoassay , Gene Expression Regulation, Developmental/genetics , Insulin-Like Growth Factor Binding Proteins/metabolism , Liver/metabolism , Radioimmunoassay , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Seawater/chemistry , Spectroscopy, Near-Infrared
10.
Am J Physiol Regul Integr Comp Physiol ; 301(4): R947-57, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21775646

ABSTRACT

We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.


Subject(s)
Fasting/physiology , Fatty Acid Transport Proteins/metabolism , Insulin/pharmacology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Salmo salar/physiology , Animals , CD36 Antigens/metabolism , Cells, Cultured , Fatty Acids/metabolism , Female , Glucose/metabolism , In Vitro Techniques , Lipid Metabolism/drug effects , Male , Models, Animal , Muscle Fibers, Skeletal/cytology
11.
Br J Nutr ; 103(1): 3-15, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19706208

ABSTRACT

A 20-d zebrafish (Danio rerio) feeding trial, in which a near doubling of fish weight was achieved, was conducted with GM feed ingredients to evaluate feed intake, growth, stress response and uptake of dietary DNA. A partial aim of the study was to assess zebrafish as a model organism in GM safety assessments. Roundup Ready soya (RRS), YieldGard Bt maize (MON810) and their non-modified, maternal, near-isogenic lines were used in a 2 x 2 factorial design. Soya variety and maize variety were the main factors, both with two levels; non-GM and GM. Compared with fish fed non-GM maize, those fed GM maize exhibited significantly better growth, had lower mRNA transcription levels of superoxide dismutase (SOD)-1 and a tendency (non-significant) towards lower transcription of heat shock protein 70 in liver. Sex of the fish and soya variety had significant interaction effects on total RNA yield from the whole liver and transcription of SOD-1, suggesting that some diet component affecting males and females differently was present in different levels in the GM and the non-GM soya used in the present study. Dietary DNA sequences were detected in all of the organs analysed, but not all of the samples. Soya and maize rubisco (non-transgenic, multicopy genes) were most frequently detected, while MON810 transgenic DNA fragments were detected in some samples and RRS fragments were not detected. In conclusion, zebrafish shows promise as a model for this application.


Subject(s)
Animal Feed/standards , DNA, Plant/genetics , DNA, Plant/metabolism , Zebrafish/physiology , Animal Husbandry , Animals , Base Sequence , DNA Primers , DNA, Plant/analysis , Deoxyribonucleases , Female , Male , Models, Biological , Pesticide Residues/analysis , RNA, Plant/analysis , RNA, Plant/genetics , Sex Characteristics , Glycine max , Zea mays , Zebrafish/growth & development
12.
Mar Biotechnol (NY) ; 12(3): 273-81, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19618241

ABSTRACT

The aim of this study was to investigate potential differences in liver protein expression of Atlantic salmon fed genetically modified (GM) Roundup Ready soy at a high inclusion level (25% inclusion, constituting 21% of crude protein in the diet) for 7 months or a compositionally similar non-GM diet. The liver was selected as the target organ due to its importance in the general metabolism, and 2D gel electrophoresis used as a screening tool. Samples from 12 individual fish from each diet group were evaluated. Of a total of 781 analysed protein spots, only 36 were significantly different by ANOVA (p < 0.05) in abundance between the diet groups. All these spots had low fold differences (1.2-1.6) and high false discovery rate (q = 0.44), indicating minor differences in liver protein synthesis between fish fed GM and non-GM soy. Additionally, low fold differences were observed. Four protein spots were analyzed by liquid chromatography tandem mass spectrometry and identified using a combination of online searches in NCBI and searches in an inhouse database containing salmonid expressed sequence tags and contigs. Follow-up on these proteins by real-time polymerase chain reaction did not identify differences at the transcriptional level.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Glycine max/genetics , Proteomics , Salmo salar/metabolism , Animal Nutritional Physiological Phenomena , Animals , Energy Intake , Food, Genetically Modified , Gene Expression Regulation/drug effects , Plants, Genetically Modified
13.
Article in English | MEDLINE | ID: mdl-18723106

ABSTRACT

To investigate the endocrine signalling from dietary plant protein on somatotropic system and gastrointestinal hormone cholecystokinin (CCK), two iso-amino acid diets based on either high plant or high fish meal protein were fed to Atlantic salmon. Salmon with an average starting weight of 641+/-23 g (N=180), were fed a fish meal (FM) based diet (containing 40% FM) or diets mainly consisting of blended plant proteins (PP) containing only 13% marine protein, of which only 5% was FM for 3 months. mRNA levels of target genes GH, GH-R, IGF-I, IGF-II, IGFBP-1, IGF-IR in addition to CCK-L, were studied in brain, hepatic tissue and fast muscle, and circulating levels of IGF-I in plasma of Atlantic salmon were measured. We detected reduced feed intake resulting in lower growth, weight gain and muscle protein accretion in salmon fed plant protein compared to a diet based on fish meal. There were no significant effects on the regulation of the target genes in brain or in hepatic tissues, but a trend of down-regulation of IGF-I was detected in fast muscle. Lower feed intake, and therefore lower intake of the indispensable amino acids, may have resulted in lower pituitary GH and lower IGF-I mRNA levels in muscle tissues. This, together with higher protein catabolism, may be the main cause of the reduced growth of salmon fed plant protein diet. There were no signalling effects detected either by the minor differences of the diets on mRNA levels of GH, GH-R, IGF-IR, IGF-II, IGFBP-1, CCK or plasma protein IGF-I.


Subject(s)
Cholecystokinin/metabolism , Growth Hormone/metabolism , Plant Proteins, Dietary/administration & dosage , Salmo salar/metabolism , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Aquaculture , Base Sequence , Brain/metabolism , Cholecystokinin/genetics , DNA Primers/genetics , Down-Regulation , Fish Proteins/administration & dosage , Growth Hormone/genetics , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Muscle Fibers, Fast-Twitch/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmo salar/genetics , Salmo salar/growth & development , Somatomedins/genetics , Somatomedins/metabolism
14.
BMC Mol Biol ; 8: 48, 2007 Jun 08.
Article in English | MEDLINE | ID: mdl-17559653

ABSTRACT

BACKGROUND: The aim of the current examination was to evaluate if sedation and anesthetic treatment techniques affect the quality of RNA extracted from liver, gill, head kidney and brain tissues in Atlantic salmon Salmo salar L. Blood parameters were measured and tissue specimens sampled in six groups of fish; one control group (0 minutes), two groups kept in pure seawater in 90 liter tanks for 30 and 120 minutes, two groups treated with the anesthetic isoeugenol for 30 and 120 minutes, and one group kept in pure seawater for 105 minutes and then anaesthetized with metacaine for 15 minutes. RNA quality was assessed with the NanoDrop ND-1000 spectrophotometer (260/280 and 260/230 nm ratios) and with the Agilent Bioanalyzer (28S/18S ratio and RIN data) in samples either preserved in liquefied nitrogen (N2) or in RNAlater. In addition, the transcriptional levels of two fast-responding genes were quantified in gill and brain tissues. RESULTS: The results show that physiological stress during sampling does not affect the quality of RNA extracted from fish specimens. However, prolonged sedation (2 hours) resulted in a metabolic alkalosis that again affected the transcriptional levels of genes involved in ionoregulation and respiration. In gills, Na+-K+-ATPase alpha1b was significantly downregulated and hypoxia inducible factor 1 (HIF1) significantly upregulated after two hours of treatment with isoeugenol, suggesting that this commonly used sedative affects osmo-regulation and respiration in the fish. The results also suggest that for tissue preservation in general it is better to flash-freeze fish specimens in liquefied N2 than to use RNAlater. CONCLUSION: Prolonged sedation may affect the transcription of fast-responding genes in tissues of fish. Two hours of sedation with isoeugenol resulted in downregulation of the Na+-K+-ATPase alpha1b gene and upregulation of the HIF1 gene in gills of Atlantic salmon. The quality of RNA extracted from tissue specimens, however, was not affected by sedation treatment. Flash-freezing of tissue specimens seems to be the preferred preservation technique, when sampling fish tissue specimens for RNA extraction.


Subject(s)
Anesthetics/pharmacology , RNA/drug effects , Salmo salar , Transcription, Genetic/drug effects , Aminobenzoates/pharmacology , Animals , Eugenol/analogs & derivatives , Eugenol/pharmacology , RNA/analysis , RNA Stability/drug effects , Salmo salar/blood , Salmo salar/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...