Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35448893

ABSTRACT

Allergy to Polistes dominula (European paper wasp) venom is of particular relevance in Southern Europe, potentially becoming a threat in other regions in the near future, and can be effectively cured by venom immunotherapy (VIT). As allergen content in extracts may vary and have an impact on diagnostic and therapeutic approaches, the aim was to compare five therapeutic preparations for VIT of P. dominula venom allergy available in Spain. Products from five different suppliers were analyzed by SDS-PAGE and LC-MS/MS and compared with a reference venom sample. Three products with P. dominula venom and one product with a venom mixture of American Polistes species showed a comparable band pattern in SDS-PAGE as the reference sample and the bands of the major allergens phospholipase A1 and antigen 5 were assignable. The other product, which consists of a mixture of American Polistes species, exhibited the typical band pattern in one, but not in another sample from a second batch. All annotated P. dominula allergens were detected at comparable levels in LC-MS/MS analysis of products containing P. dominula venom. Due to a lack of genomic information on the American Polistes species, the remaining products were not analyzed by this method. The major Polistes allergens were present in comparable amounts in the majority, but not in all investigated samples of venom preparations for VIT of P. dominula venom allergy.


Subject(s)
Hypersensitivity , Wasps , Allergens , Animals , Chromatography, Liquid , Desensitization, Immunologic , Tandem Mass Spectrometry , Wasp Venoms
2.
Toxins (Basel) ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34564620

ABSTRACT

In this review, we outline and reflect on the important differences between allergen-specific immunotherapy for inhalant allergies (i.e., aeroallergens) and venom-specific immunotherapy (VIT), with a special focus on Venomil® Bee and Wasp. Venomil® is provided as a freeze-dried extract and a diluent to prepare a solution for injection for the treatment of patients with IgE-mediated allergies to bee and/or wasp venom and for evaluating the degree of sensitivity in a skin test. While the materials that make up the product have not changed, the suppliers of raw materials have changed over the years. Here, we consolidate relevant historical safety and efficacy studies that used products from shared manufacture supply profiles, i.e., products from Bayer or Hollister-Stier. We also consider the characterization and standardization of venom marker allergens, providing insights into manufacturing controls that have produced stable and consistent quality profiles over many years. Quality differences between products and their impacts on treatment outcomes have been a current topic of discussion and further research. Finally, we review the considerations surrounding the choice of depot adjuvant most suitable to augmenting VIT.


Subject(s)
Allergens/isolation & purification , Bee Venoms/immunology , Desensitization, Immunologic/methods , Desensitization, Immunologic/statistics & numerical data , Hypersensitivity/therapy , Wasp Venoms/immunology , Allergens/chemistry , Animals , Bees/chemistry , Desensitization, Immunologic/classification , Humans , Wasps/chemistry
3.
Front Immunol ; 11: 594911, 2020.
Article in English | MEDLINE | ID: mdl-33324411

ABSTRACT

The concept of adjuvants or adjuvant systems, used in vaccines, exploit evolutionary relationships associated with how the immune system may initially respond to a foreign antigen or pathogen, thus mimicking natural exposure. This is particularly relevant during the non-specific innate stage of the immune response; as such, the quality of this response may dictate specific adaptive responses and conferred memory/protection to that specific antigen or pathogen. Therefore, adjuvants may optimise this response in the most appropriate way for a specific disease. The most commonly used traditional adjuvants are aluminium salts; however, a biodegradable adjuvant, MCT®, was developed for application in the niche area of allergy immunotherapy (AIT), also in combination with a TLR-4 adjuvant-Monophosphoryl Lipid A (MPL®)-producing the first adjuvant system approach for AIT in the clinic. In the last decade, the use and effectiveness of MCT® across a variety of disease models in the preclinical setting highlight it as a promising platform for adjuvant systems, to help overcome the challenges of modern vaccines. A consequence of bringing together, for the first time, a unified view of MCT® mode-of-action from multiple experiments and adjuvant systems will help facilitate future rational design of vaccines while shaping their success.


Subject(s)
Adjuvants, Immunologic , Lipid A/analogs & derivatives , Tyrosine , Vaccines , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/therapeutic use , Humans , Lipid A/chemistry , Lipid A/therapeutic use , Tyrosine/chemistry , Tyrosine/therapeutic use , Vaccines/chemistry , Vaccines/therapeutic use
4.
Sci Total Environ ; 566-567: 1614-1620, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27317132

ABSTRACT

BACKGROUND: Grasses (Poaceae) are one of the largest plant families and are distributed worldwide. Grass pollen allergy is one of the most important pollen allergies affecting large parts of the population worldwide. The grass pollen season itself is special since it is caused by the flowering of various grass species that present unique profiles of allergenicity, which assumingly plays a significant role and impact on grass pollen sensitization profiles for the allergy sufferer. The aim of this study, conducted in Vienna, 2014, was to analyze the possible contribution of prevalent grass species to the grass pollen season and to the symptom load of grass allergy sufferers. METHODS: This was the first study that combines phenological observations (i.e. grass species and their flowering periods) with aerobiological measurements (i.e. daily grass pollen concentrations) in concert with allergic symptoms from local users of the Patient's Hayfever Diary (symptom load index calculation). RESULTS: Both the pollen concentrations and the symptom levels were higher in the first half of the main grass pollen season and therefore show the highest impact on pollen allergy sufferers. Of important note were the following species that are widely distributed in Vienna: Kentucky bluegrass (Poa pratensis), orchard grass (Dactylis glomerata), false oat-grass (Arrhenatherum elatius), fescue grass (Festuca sp.) and perennial rye-grass (Lolium perenne). CONCLUSION: Monitoring different grass species provided evidence for varying contribution in pollination across the main grass pollen season and highlighted the significance this impact may have on pollen allergy sufferers.


Subject(s)
Allergens/adverse effects , Poaceae , Pollen/physiology , Austria , Cities , Humans , Hypersensitivity/etiology , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...