Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3782, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35821210

ABSTRACT

The formation and differentiation of the crust of Mars in the first tens of millions of years after its accretion can only be deciphered from incredibly limited records. The martian breccia NWA 7034 and its paired stones is one of them. This meteorite contains the oldest martian igneous material ever dated: ~4.5 Ga old. However, its source and geological context have so far remained unknown. Here, we show that the meteorite was ejected 5-10 Ma ago from the north-east of the Terra Cimmeria-Sirenum province, in the southern hemisphere of Mars. More specifically, the breccia belongs to the ejecta deposits of the Khujirt crater formed 1.5 Ga ago, and it was ejected as a result of the formation of the Karratha crater 5-10 Ma ago. Our findings demonstrate that the Terra Cimmeria-Sirenum province is a relic of the differentiated primordial martian crust, formed shortly after the accretion of the planet, and that it constitutes a unique record of early crustal processes. This province is an ideal landing site for future missions aiming to unravel the first tens of millions of years of the history of Mars and, by extension, of all terrestrial planets, including the Earth.


Subject(s)
Mars , Meteoroids , Earth, Planet , Extraterrestrial Environment , Geology
2.
Astrophys J Lett ; 855(2)2018 Mar 10.
Article in English | MEDLINE | ID: mdl-30713654

ABSTRACT

It has been proposed that some meteorites, CB and CH chondrites, contain material formed as a result of a protoplanetary collision during accretion. Their melt droplets (chondrules) and FeNi metal are proposed to have formed by evaporation and condensation in the resulting impact plume. We observe that the skeletal olivine (SO) chondrules in CBb chondrites have a blebby texture and an enrichment in refractory elements not found in normal chondrules. Because the texture requires complete melting, their maximum liquidus temperature of 1928 K represents a minimum temperature for the putative plume. Dynamic crystallization experiments show that the SO texture can be created only by brief reheating episodes during crystallization, giving a partial dissolution of olivine. The ejecta plume formed in a smoothed particle hydrodynamics simulation served as the basis for 3D modeling with the adaptive mesh refinement code FLASH4.3. Tracer particles that move with the fluid cells are used to measure the in situ cooling rates. Their cooling rates are ~10,000 K hr-1 briefly at peak temperature and, in the densest regions of the plume, ~100 K hr-1 for 1400-1600 K. A small fraction of cells is seen to be heating at any one time, with heating spikes explained by the compression of parcels of gas in a heterogeneous patchy plume. These temperature fluctuations are comparable to those required in crystallization experiments. For the first time, we find an agreement between experiments and models that supports the plume model specifically for the formation of CBb chondrules.

3.
Nature ; 503(7477): 513-6, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24256724

ABSTRACT

The ancient cratered terrain of the southern highlands of Mars is thought to hold clues to the planet's early differentiation, but until now no meteoritic regolith breccias have been recovered from Mars. Here we show that the meteorite Northwest Africa (NWA) 7533 (paired with meteorite NWA 7034) is a polymict breccia consisting of a fine-grained interclast matrix containing clasts of igneous-textured rocks and fine-grained clast-laden impact melt rocks. High abundances of meteoritic siderophiles (for example nickel and iridium) found throughout the rock reach a level in the fine-grained portions equivalent to 5 per cent CI chondritic input, which is comparable to the highest levels found in lunar breccias. Furthermore, analyses of three leucocratic monzonite clasts show a correlation between nickel, iridium and magnesium consistent with differentiation from impact melts. Compositionally, all the fine-grained material is alkalic basalt, chemically identical (except for sulphur, chlorine and zinc) to soils from Gusev crater. Thus, we propose that NWA 7533 is a Martian regolith breccia. It contains zircons for which we measured an age of 4,428 ± 25 million years, which were later disturbed 1,712 ± 85 million years ago. This evidence for early crustal differentiation implies that the Martian crust, and its volatile inventory, formed in about the first 100 million years of Martian history, coeval with earliest crust formation on the Moon and the Earth. In addition, incompatible element abundances in clast-laden impact melt rocks and interclast matrix provide a geochemical estimate of the average thickness of the Martian crust (50 kilometres) comparable to that estimated geophysically.

4.
Science ; 338(6108): 785-8, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23065902

ABSTRACT

Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 ± 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.


Subject(s)
Mars , Meteoroids , Carbon Isotopes/analysis , Iron Compounds/analysis , Magnesium Compounds/analysis , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Silicates/analysis
5.
Science ; 265(5180): 1846-9, 1994 Sep 23.
Article in English | MEDLINE | ID: mdl-17797224

ABSTRACT

Chromium, silicon, and phosphorus concentrations of 0.1 to 1 percent by weight are common in metal grains in the least metamorphosed ordinary and carbonaceous chondrites. These concentrations are fairly uniform within single chondrules (but different from chondrule to chondrule) and are inversely correlated with the fayalite concentrations of the chondrule olivines. This relation shows that these chromium, silicon, and phosphorus concentrations could not have been established by condensation or equilibration in the solar nebula but are the result of metal-silicate equilibration within chondrules. Two generations of inclusions made by the exsolution of those elements have been identified: One formed during chondrule cooling and the other formed during metamorphism. The distribution and composition of the latter in type 3 to type 5 chondrites are consistent with increasing metamorphism relative to type 2 and type 3.0 material.

SELECTION OF CITATIONS
SEARCH DETAIL
...