Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 38(9): 2664-2666, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35289834

ABSTRACT

SUMMARY: To address the difficulty in assessing the implication of regulatory variants in diseases, a scoring scheme previously published allows the calculation of the Regulatory Variant Evidence score (RVE-score). The score represents the accumulated evidence for a causative role of a regulatory variant in a disease. Regulatory Evidence for Variants Underlying Phenotypes was built to calculate the RVE-score of regulatory variants, based on the 24 criteria, with a hybrid approach combining information retrieved from public databases and user input. AVAILABILITY AND IMPLEMENTATION: RevUP is freely available at http://www.revup-classifier.ca. The source code is available at https://github.com/wassermanlab/revup. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Rare Diseases , Software , Humans , Rare Diseases/genetics , Databases, Factual , Phenotype , Data Management
2.
Genome Biol ; 20(1): 210, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31623682

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying complex biological systems, such as tumor heterogeneity and tissue microenvironments. However, the sources of technical and biological variation in primary solid tumor tissues and patient-derived mouse xenografts for scRNA-seq are not well understood. RESULTS: We use low temperature (6 °C) protease and collagenase (37 °C) to identify the transcriptional signatures associated with tissue dissociation across a diverse scRNA-seq dataset comprising 155,165 cells from patient cancer tissues, patient-derived breast cancer xenografts, and cancer cell lines. We observe substantial variation in standard quality control metrics of cell viability across conditions and tissues. From the contrast between tissue protease dissociation at 37 °C or 6 °C, we observe that collagenase digestion results in a stress response. We derive a core gene set of 512 heat shock and stress response genes, including FOS and JUN, induced by collagenase (37 °C), which are minimized by dissociation with a cold active protease (6 °C). While induction of these genes was highly conserved across all cell types, cell type-specific responses to collagenase digestion were observed in patient tissues. CONCLUSIONS: The method and conditions of tumor dissociation influence cell yield and transcriptome state and are both tissue- and cell-type dependent. Interpretation of stress pathway expression differences in cancer single-cell studies, including components of surface immune recognition such as MHC class I, may be especially confounded. We define a core set of 512 genes that can assist with the identification of such effects in dissociated scRNA-seq experiments.


Subject(s)
Genomics/methods , Neoplasms/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Cold Temperature , Collagenases , Humans , Mice , Peptide Hydrolases , Stress, Physiological , Transcriptome
3.
Nat Methods ; 16(10): 1007-1015, 2019 10.
Article in English | MEDLINE | ID: mdl-31501550

ABSTRACT

Single-cell RNA sequencing has enabled the decomposition of complex tissues into functionally distinct cell types. Often, investigators wish to assign cells to cell types through unsupervised clustering followed by manual annotation or via 'mapping' to existing data. However, manual interpretation scales poorly to large datasets, mapping approaches require purified or pre-annotated data and both are prone to batch effects. To overcome these issues, we present CellAssign, a probabilistic model that leverages prior knowledge of cell-type marker genes to annotate single-cell RNA sequencing data into predefined or de novo cell types. CellAssign automates the process of assigning cells in a highly scalable manner across large datasets while controlling for batch and sample effects. We demonstrate the advantages of CellAssign through extensive simulations and analysis of tumor microenvironment composition in high-grade serous ovarian cancer and follicular lymphoma.


Subject(s)
Gene Expression Profiling , Lymphoma, Follicular/pathology , Probability , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tumor Microenvironment , Humans , Lymphoma, Follicular/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...