Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 363(1829): 807-28; discussion 1035-40, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15901537

ABSTRACT

The 2-oxoglutarate (2OG) and ferrous iron dependent oxygenases are a superfamily of enzymes that catalyse a wide range of reactions including hydroxylations, desaturations and oxidative ring closures. Recently, it has been discovered that they act as sensors in the hypoxic response in humans and other animals. Substrate oxidation is coupled to conversion of 2OG to succinate and carbon dioxide. Kinetic, spectroscopic and structural studies are consistent with a consensus mechanism in which ordered binding of (co)substrates enables control of reactive intermediates. Binding of the substrate to the active site triggers the enzyme for ligation of dioxygen to the metal. Oxidative decarboxylation of 2OG then generates the ferryl species thought to mediate substrate oxidation. Structural studies reveal a conserved double-stranded beta-helix core responsible for binding the iron, via a 2His-1carboxylate motif and the 2OG side chain. The rigidity of this core contrasts with the conformational flexibility of surrounding regions that are involved in binding the substrate. Here we discuss the roles of 2OG oxygenases in terms of the generic structural and mechanistic features that render the 2OG oxygenases suited for their functions.


Subject(s)
Cell Hypoxia/physiology , Iron/chemistry , Iron/metabolism , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Models, Biological , Models, Chemical , Signal Transduction/physiology , Animals , Catalysis , Humans , Models, Molecular , Oxidation-Reduction
2.
Anal Biochem ; 336(1): 125-31, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15582567

ABSTRACT

A widely used generic assay for 2-oxoglutarate-dependent oxygenases relies upon monitoring the release of 14CO2 from labeled [1-14C]-2-oxoglutarate. We report an alternative assay in which depletion of 2-oxoglutarate is monitored by its postincubation derivatization with o-phenylenediamine to form a product amenable to fluorescence analysis. The utility of the procedure is demonstrated by assays with hypoxia-inducible factor hydroxylases where it was shown to give results similar to those reported with the radioactive assay, but it is more efficient and readily adapted to a multiwell format. The process should be amenable to the assay of other 2-oxoglutarate-consuming enzymes and to the discovery of inhibitors.


Subject(s)
Ketoglutaric Acids/metabolism , Oxygenases/analysis , Ketoglutaric Acids/chemistry , Kinetics , Mixed Function Oxygenases , Phenylenediamines/chemistry , Procollagen-Proline Dioxygenase/analysis , Repressor Proteins/metabolism , Spectrometry, Fluorescence , Transcription Factors/metabolism
3.
Curr Pharm Des ; 10(8): 821-33, 2004.
Article in English | MEDLINE | ID: mdl-15032687

ABSTRACT

Humans, like other complex aerobic organisms, possess highly evolved systems for the delivery of dioxygen to all the cells of the body. These systems are regulated since excessive levels of dioxygen are toxic. In animals hypoxia causes an increase in the transcription levels of specific genes, including those encoding for vascular endothelial growth factor and erythropoietin. At the transcriptional level, the hypoxic response is mediated by hypoxia-inducible factor (HIF), an alpha,beta-heterodimeric protein. HIF-beta is constitutively present, but HIF-alpha levels are regulated by dioxygen. Under hypoxic conditions, levels of HIF-alpha rise, allowing its dimerization with HIF-beta and enabling transcriptional activation. Under normoxic conditions both the level of HIF-alpha and its ability to enable transcription are directly controlled by its post-translational oxidation by oxygenases. Hydroxylation of HIF-alpha at either of two conserved prolyl residues enables its recognition by the von Hippel-Lindau tumour suppressor protein which targets it for proteasomal degradation. Hydroxylation of an asparaginyl residue in the C-terminal transactivation domain of HIF-alpha directly prevents its interaction with the coactivator p300 from the transcription complex. Hydroxylation of HIF-alpha is catalysed by members of the iron (II) and 2-oxoglutarate dependent oxygenase family. In humans, three prolyl-hydroxylase isozymes (PHD1-3, for prolyl hydroxylase domain enzymes) and an asparaginyl hydroxylase (FIH, for factor inhibiting HIF) have been identified. Recent studies have identified additional post-translational modifications of HIF-alpha including acetylation and phosphorylation. Modulation of the HIF mediated hypoxic response is of potential use in a wide range of disease states including cardiovascular disease and cancer. Here we review current knowledge of the HIF pathway focusing on its regulation by dioxygen and discussion of potential targets and challenges in attempts to modulate the pathway for medicinal application.


Subject(s)
Cardiovascular Diseases/metabolism , DNA-Binding Proteins/physiology , Neoplasms/metabolism , Receptors, Aryl Hydrocarbon/physiology , Signal Transduction , Transcription Factors/physiology , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator , Cardiovascular Diseases/therapy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Genetic Therapy , Humans , Hypoxia-Inducible Factor 1, alpha Subunit , Neoplasms/therapy , Oxygen/physiology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Biochem Soc Trans ; 31(Pt 3): 510-5, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12773146

ABSTRACT

Sensing of ambient dioxygen levels and appropriate feedback mechanisms are essential processes for all multicellular organisms. In animals, moderate hypoxia causes an increase in the transcription levels of specific genes, including those encoding vascular endothelial growth factor and erythropoietin. The hypoxic response is mediated by hypoxia-inducible factor (HIF), an alphabeta heterodimeric transcription factor in which both the HIF subunits are members of the basic helix-loop-helix PAS (PER-ARNT-SIM) domain family. Under hypoxic conditions, levels of HIFalpha rise, allowing dimerization with HIFbeta and initiating transcriptional activation. Two types of dioxygen-dependent modification to HIFalpha have been identified, both of which inhibit the transcriptional response. Firstly, HIFalpha undergoes trans -4-hydroxylation at two conserved proline residues that enable its recognition by the von Hippel-Lindau tumour-suppressor protein. Subsequent ubiquitinylation, mediated by an ubiquitin ligase complex, targets HIFalpha for degradation. Secondly, hydroxylation of an asparagine residue in the C-terminal transactivation domain of HIFalpha directly prevents its interaction with the co-activator p300. Hydroxylation of HIFalpha is catalysed by enzymes of the iron(II)- and 2-oxoglutarate-dependent dioxygenase family. In humans, three prolyl hydroxylase isoenzymes (PHD1-3) and an asparagine hydroxylase [factor inhibiting HIF (FIH)] have been identified. The role of 2-oxoglutarate oxygenases in the hypoxic and other signalling pathways is discussed.


Subject(s)
Iron/physiology , Mixed Function Oxygenases/physiology , Signal Transduction/physiology , Amino Acid Sequence , Animals , Crystallography, X-Ray , Drosophila/enzymology , Hypoxia-Inducible Factor 1, alpha Subunit , Mixed Function Oxygenases/chemistry , Models, Molecular , Protein Conformation , Transcription Factors/chemistry , Transcription Factors/metabolism
5.
Cell ; 107(1): 43-54, 2001 Oct 05.
Article in English | MEDLINE | ID: mdl-11595184

ABSTRACT

HIF is a transcriptional complex that plays a central role in mammalian oxygen homeostasis. Recent studies have defined posttranslational modification by prolyl hydroxylation as a key regulatory event that targets HIF-alpha subunits for proteasomal destruction via the von Hippel-Lindau ubiquitylation complex. Here, we define a conserved HIF-VHL-prolyl hydroxylase pathway in C. elegans, and use a genetic approach to identify EGL-9 as a dioxygenase that regulates HIF by prolyl hydroxylation. In mammalian cells, we show that the HIF-prolyl hydroxylases are represented by a series of isoforms bearing a conserved 2-histidine-1-carboxylate iron coordination motif at the catalytic site. Direct modulation of recombinant enzyme activity by graded hypoxia, iron chelation, and cobaltous ions mirrors the characteristics of HIF induction in vivo, fulfilling requirements for these enzymes being oxygen sensors that regulate HIF.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans/physiology , DNA-Binding Proteins/metabolism , Helminth Proteins/metabolism , Nuclear Proteins/metabolism , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , 2,2'-Dipyridyl/metabolism , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , HeLa Cells , Helminth Proteins/chemistry , Helminth Proteins/genetics , Homeostasis , Humans , Hydroxylation , Hypoxia-Inducible Factor 1 , Hypoxia-Inducible Factor 1, alpha Subunit , Indicators and Reagents , Ligases/metabolism , Molecular Sequence Data , Nuclear Proteins/genetics , Oxygen/metabolism , Procollagen-Proline Dioxygenase/metabolism , Protein Isoforms , Protein Structure, Secondary , Rats , Recombinant Proteins/metabolism , Sequence Alignment , Transcription Factors/genetics , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein
6.
Anal Chem ; 73(17): 4154-61, 2001 Sep 01.
Article in English | MEDLINE | ID: mdl-11569804

ABSTRACT

Biotin synthase from Escherichia coli was analyzed by nanoflow electrospray ionization mass spectrometry. From solution conditions in which the protein is in its native state, a distribution of monomeric, dimeric, and tetrameric species was observed. The distribution of these species was sensitive to changes in ionic strength: in the positive ion spectrum, biotin synthase at low ionic strength (pH 7.0-8.5) yielded less than 10% dimer. The masses of the monomeric species were consistent with the presence of a [2Fe-2S] cluster with a mass difference of 175.3 Da from the apomonomer with one disulfide bond. Despite the molecular mass of the noncovalent dimer (77 kDa), it was possible to observe a dimeric species containing one iron-sulfur cluster in both positive and negative ion spectra. Additionally, observation of a series of charge states assigned to the apodimer indicated that binding of the iron-sulfur cluster was not required to maintain the dimer. Binding of Cu2+ to biotin synthase was also observed; in the presence of excess chelating agent, free metals were removed and the iron-sulfur cluster remained intact. Evidence for the coordination of the iron-sulfur cluster in biotin synthase was obtained in a tandem mass spectrometry experiment. A single charge state containing the cluster at m/z 2416.9 was isolated, and collision-induced dissociation resulted in sequential loss of sulfur and retention of Fe3+.


Subject(s)
Escherichia coli/enzymology , Iron/chemistry , Sulfur/chemistry , Sulfurtransferases/chemistry , Buffers , Spectrometry, Mass, Electrospray Ionization
7.
J Biol Chem ; 275(41): 32277-80, 2000 Oct 13.
Article in English | MEDLINE | ID: mdl-10913144

ABSTRACT

Biotin synthase is required for the conversion of dethiobiotin to biotin and requires a number of accessory proteins and small molecule cofactors for activity in vitro. We have previously identified two of these proteins as flavodoxin and ferredoxin (flavodoxin) NADP(+) reductase. We now report the identification of MioC as a third essential protein, together with its cloning, purification, and characterization. Purified MioC has a UV-visible spectrum characteristic of a flavoprotein and contains flavin mononucleotide. The presence of flavin mononucleotide and the primary sequence similarity to flavodoxin suggest that MioC may function as an electron transport protein. The role of MioC in the biotin synthase reaction is discussed, and the structure and function of MioC is compared with that of flavodoxin.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins , Escherichia coli/enzymology , Flavin Mononucleotide/metabolism , Flavoproteins , Sulfurtransferases/metabolism , Apoproteins/chemistry , Apoproteins/genetics , Apoproteins/isolation & purification , Apoproteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Biotin/analogs & derivatives , Biotin/metabolism , Cloning, Molecular , Electron Transport , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Flavodoxin/chemistry , Flavodoxin/metabolism , Molecular Weight , Protein Binding , Sequence Analysis, Protein , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
8.
Biochemistry ; 39(14): 4165-73, 2000 Apr 11.
Article in English | MEDLINE | ID: mdl-10747808

ABSTRACT

Biotin synthase and lipoate synthase are homodimers that are required for the C-S bond formation at nonactivated carbon in the biosynthesis of biotin and lipoic acid, respectively. Aerobically isolated monomers were previously shown to contain a (2Fe-2S) cluster, however, after incubation with dithionite one (4Fe-4S) cluster per dimer was obtained, suggesting that two (2Fe-2S) clusters had combined at the interface of the subunits to form the (4Fe-4S) cluster. Here we report Mössbauer studies of (57)Fe-reconstituted biotin synthase showing that anaerobically prepared enzyme can accommodate two (4Fe-4S) clusters per dimer. The (4Fe-4S) cluster is quantitatively converted into a (2Fe-2S)(2+) cluster upon exposure to air. Reduction of the air-exposed enzyme with dithionite or photoreduced deazaflavin yields again (4Fe-4S) clusters. The (4Fe-4S) cluster is stable in both the 2+ and 1+ oxidation states. The Mössbauer and EPR parameters were DeltaE(q) = 1.13 mm/s and delta = 0.44 mm/s for the diamagnetic (4Fe-4S)(2+) and DeltaE(q) = 0.51 mm/s, delta = 0.85 mm/s, g(par) = 2.035, and g(perp) = 1.93 for the S = (1)/(2) state of (4Fe-4S)(1+). Considering that we find two (4Fe-4S) clusters per dimer, our studies argue against the early proposal that the enzyme contains one (4Fe-4S) cluster bridging the two subunits. Our study of lipoate synthase gave results similar to those obtained for BS: under strict anaerobiosis, lipoate synthase can accommodate a (4Fe-4S) cluster per subunit [DeltaE(q) = 1.20 mm/s and delta = 0.44 mm/s for the diamagnetic (4Fe-4S)(2+) and g(par) = 2.039 and g(perp) = 1.93 for the S = (1)/(2) state of (4Fe-4S)(1+)], which reacts with oxygen to generate a (2Fe-2S)(2+) center.


Subject(s)
Bacterial Proteins/chemistry , Sulfurtransferases/chemistry , Binding Sites , Escherichia coli , Iron , Substrate Specificity , Sulfur
9.
FEBS Lett ; 466(2-3): 372-6, 2000 Jan 28.
Article in English | MEDLINE | ID: mdl-10682863

ABSTRACT

Biotin synthase (BioB) is a member of a family of enzymes that includes anaerobic ribonucleotide reductase and pyruvate formate lyase activating enzyme. These enzymes all use S-adenosylmethionine during turnover and contain three highly conserved cysteine residues that may act as ligands to an iron-sulfur cluster required for activity. Three mutant enzymes of BioB have been made, each with one cysteine residue (C53, 57, 60) mutated to alanine. All three mutant enzymes were inactive, but they still exhibited the characteristic UV-visible spectrum of a [2Fe-2S]2+ cluster similar to that of the wild-type enzyme.


Subject(s)
Escherichia coli/enzymology , Iron-Sulfur Proteins/metabolism , Sulfurtransferases/metabolism , Base Sequence , DNA Primers , Iron/metabolism , Ligands , Mutagenesis, Site-Directed , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet , Sulfurtransferases/genetics , Sulfurtransferases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...