Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Monit ; 13(5): 1404-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21409222

ABSTRACT

A novel porous organosilicate material was evaluated for application as a solid phase extraction sorbent for preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbent in spiked deionized water, groundwater, and surface water was evaluated. Targets considered included 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, RDX, HMX, and nitroglycerin. The sorbent was shown to provide improved performance over Sep-Pak RDX. The impact of complex matrices on target preconcentration by the sorbent was also found to be less dramatic than that observed for LiChrolut EN. The impact of changes in pH on target preconcentration was considered. Aqueous soil extracts generated from samples collected at sites of ordnance testing were also used to evaluate the materials. The results presented here demonstrate the potential of this novel sorbent for application as a solid phase extraction material for the preconcentration of nitroenergetic targets from aqueous solutions.


Subject(s)
Explosive Agents/analysis , Nitrogen Compounds/analysis , Organosilicon Compounds/chemistry , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Azocines/analysis , Azocines/chemistry , Chromatography, High Pressure Liquid , Dinitrobenzenes/analysis , Dinitrobenzenes/chemistry , Explosive Agents/chemistry , Fresh Water/chemistry , Nitrogen Compounds/chemistry , Nitroglycerin/analysis , Nitroglycerin/chemistry , Triazines/analysis , Triazines/chemistry , Trinitrotoluene/analysis , Trinitrotoluene/chemistry , Water Pollutants, Chemical/chemistry
2.
J Hazard Mater ; 173(1-3): 115-22, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19758750

ABSTRACT

Military training with howitzers and mortars produces excess propellant that is burned on the training range and can result in point sources containing high concentrations of unreacted propellant constituents. Propellants contain energetic compounds such as nitroglycerin (NG) and 2,4-dinitrotoluene (2,4-DNT), both of which are found at firing positions and propellant disposal areas. To quantify the mass of residue remaining from the field-expedient disposal of propellants, two mortar propellants and one howitzer propellant were burned under different field conditions. These conditions included burning on a snow pack, at the bottom of a snow pit, and in a pan surrounded by snow for the mortar propellants and on dry and wet sand for the howitzer propellant. For the mortar propellant, the energetics (NG) remaining after burning in the bowl, on frozen ground, and on snow were 0.21%, 5.2% and 18%, respectively. For the howitzer propellant, the difference in energetics (2,4-DNT) remaining after disposal on wet and dry sand was <0.1%, with the overall residue rate of around 1%, similar to that for the mortar propellant burned in an open container. These tests demonstrate that environmental factors, especially in winter, can play a significant role in the effectiveness of field-expedient disposal of propellants.


Subject(s)
Dinitrobenzenes/analysis , Explosive Agents/analysis , Hazardous Waste/analysis , Nitroglycerin/analysis , Refuse Disposal/methods , Soil Pollutants/analysis , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Firearms , Freezing , Incineration , Quality Control , Seasons , Snow/chemistry , Soil/analysis
3.
Chemosphere ; 78(4): 467-73, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19883934

ABSTRACT

Field observations of weathering Comp B (RDX/TNT 60/40) residue were made on a live-fire training range over four years. The Comp B residue was formed by low-order detonations of 120-mm mortar projectiles. Physical changes were the disaggregation of initially solid chunks into masses of smaller diameter pieces and formation of red phototransformation products that washed off with rain or tidal flooding. Disaggregation increased the surface area of the residue, thereby increasing the potential for dissolution. The bulk of the mass of Comp B was in the craters, but solid chunks were scattered asymmetrically up to 30m away.


Subject(s)
Explosive Agents/analysis , Salts/pharmacology , Sodium Chloride/chemistry , Wetlands , Explosive Agents/isolation & purification , Particle Size , Soil Pollutants/analysis , Water Movements
4.
Chemosphere ; 63(8): 1280-90, 2006 May.
Article in English | MEDLINE | ID: mdl-16352328

ABSTRACT

Environmental investigations have been conducted at 23 military firing ranges in the United States and Canada. The specific training facilities most frequently evaluated were hand grenade, antitank rocket, and artillery ranges. Energetic compounds (explosives and propellants) were determined and linked to the type of munition used and the major mechanisms of deposition.


Subject(s)
Firearms , Soil Pollutants/analysis , Aniline Compounds/analysis , Azocines/analysis , Benzene Derivatives/analysis , Canada , Environmental Monitoring , Heterocyclic Compounds, 1-Ring/analysis , Nitroglycerin/analysis , Triazines/analysis , United States
5.
Chemosphere ; 61(6): 888-94, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15964048

ABSTRACT

Snow was used as a collection medium to examine 1,3,5-hexahydro-1,3,5-trinitrotriazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues post-detonation of 60-, 81-, and 120-mm mortar rounds, 105- and 155-mm howitzer rounds, M67 hand grenades, 40-mm rifle grenades, and blocks of C4. Residue-covered snow samples were collected, processed, and analyzed for explosives without cross-contamination from previous detonations and other potential matrix interferences. Detonation trials were performed following standard military live-fire and blow-in-place techniques. When possible, replicate munitions were detonated under similar conditions to provide a more reliable estimation of the mass of unconsumed high explosive residues. Overall the amount of energetic residues deposited from live-fire detonations were considerably less than the energetic residues deposited by blow-in-place detonations.


Subject(s)
Environmental Pollutants/analysis , Explosions , Triazines/analysis , Trinitrotoluene/analysis , Environmental Monitoring , Snow/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...