Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 9907, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336951

ABSTRACT

Recurring heat and drought episodes present challenges to the sustainability of grape production worldwide. We investigated the impacts of heat and drought stress on transcriptomic and metabolic responses of berries from two wine grape varieties. Cabernet Sauvignon and Riesling grapevines were subjected to one of four treatments during early fruit ripening: (1) drought stress only, (2) heat stress only, (3) simultaneous drought and heat stress, (4) no drought or heat stress (control). Berry metabolites, especially organic acids, were analyzed, and time-course transcriptome analysis was performed on samples before, during, and after the stress episode. Both alone and in conjunction with water stress, heat stress had a much more significant impact on berry organic acid content, pH, and titratable acidity than water stress. This observation contrasts with previous reports for leaves, which responded more strongly to water stress, indicating that grape berries display a distinct, organ-specific response to environmental stresses. Consistent with the metabolic changes, the global transcriptomic analysis revealed that heat stress had a more significant impact on gene expression in grape berries than water stress in both varieties. The differentially expressed genes were those associated with the tricarboxylic acid cycle and glyoxylate cycle, mitochondrial electron transport and alternative respiration, glycolysis and gluconeogenesis, carbohydrate allocation, ascorbate metabolism, and abiotic stress signaling pathways. Knowledge regarding how environmental stresses, alone and in combination, impact the berry metabolism of different grape varieties will form the basis for developing recommendations for climate change mitigation strategies and genetic improvement.


Subject(s)
Transcriptome , Vitis , Vitis/metabolism , Fruit/genetics , Fruit/metabolism , Dehydration/metabolism , Heat-Shock Response/genetics
2.
Data Brief ; 43: 108384, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35799853

ABSTRACT

DNA from four sweet cherry seedlings derived from gamma-irradiated female parents was sequenced via nanopore technology (Oxford Nanopore MinION). Total data yield was 8.07 Gb, ranging from 0.92 to 3.36 Gb per sample, with the average length of mapped reads ranging from 22 Kbp-24 Kbp. Sequence data was then analysed to identify and characterize variants using a published sweet cherry reference genome. Small and medium-sized indels (55-135 bp), as well as structural variants, including several large indels and complex variants were detected. Of these, 20 variants were localized within protein-coding gene sequences, including those encoding a putative F-box protein, an ADP-ribose glyxohydrolase protein, a predicted 26S protease regulatory subunit, an E3 ubiquitin protein ligase, a UDP-galactose/UDP-blucose transporter, an alpha/beta hydrolase domain-containing protein, a rhodanese-like domain-containing protein, a cytochrome p450 protein, phosphoinositide phosphatase, cysteine synthase-like, phosphoenolpyruvate carboxylase 4, and several uncharacterized proteins. These variations could have functional and phenotypic consequences that are useful in basic research and breeding.

3.
Hortic Res ; 8(1): 166, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34274949

ABSTRACT

Breeding has been used successfully for many years in the fruit industry, giving rise to most of today's commercial fruit cultivars. More recently, new molecular breeding techniques have addressed some of the constraints of conventional breeding. However, the development and commercial introduction of such novel fruits has been slow and limited with only five genetically engineered fruits currently produced as commercial varieties-virus-resistant papaya and squash were commercialized 25 years ago, whereas insect-resistant eggplant, non-browning apple, and pink-fleshed pineapple have been approved for commercialization within the last 6 years and production continues to increase every year. Advances in molecular genetics, particularly the new wave of genome editing technologies, provide opportunities to develop new fruit cultivars more rapidly. Our review, emphasizes the socioeconomic impact of current commercial fruit cultivars developed by genetic engineering and the potential impact of genome editing on the development of improved cultivars at an accelerated rate.

4.
Transgenic Res ; 30(4): 499-528, 2021 08.
Article in English | MEDLINE | ID: mdl-33825100

ABSTRACT

The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural/genetics , Fruit/genetics , Gene Editing , Genome, Plant , Plant Breeding/methods , Plants, Genetically Modified/genetics , Gene Targeting
5.
Horticulturae ; 7(9)2021 Sep.
Article in English | MEDLINE | ID: mdl-36313595

ABSTRACT

The harvesting of sweet cherry (Prunus avium L.) fruit is a labor-intensive process. The mechanical harvesting of sweet cherry fruit is feasible; however, it is dependent on the formation of an abscission zone at the fruit-pedicel junction. The natural propensity for pedicel-fruit abscission zone (PFAZ) activation varies by cultivar, and the general molecular basis for PFAZ activation is not well characterized. In this study, ethylene-inducible change in pedicel fruit retention force (PFRF) was recorded in a developmental time-course with a concomitant analysis of the PFAZ transcriptome from three sweet cherry cultivars. In 'Skeena', mean PFRF for both control and treatment fruit dropped below the 0.40 kg-force (3.92 N) threshold for mechanical harvesting, indicating the activation of a discrete PFAZ. In 'Bing', mean PFRF for both control and treatment groups decreased over time. However, a mean PFRF conducive to mechanical harvesting was achieved only in the ethylene-treated fruit. While in 'Chelan' the mean PFRF of the control and treatment groups did not meet the threshold required for efficient mechanical harvesting. Transcriptome analysis of the PFAZ region followed by the functional annotation, differential expression analysis, and gene ontology (GO) enrichment analyses of the data facilitated the identification of phytohormone-responsive and abscission-related transcripts, as well as processes that exhibited differential expression and enrichment in a cultivar-dependent manner over the developmental time-course. Additionally, read alignment-based variant calling revealed several short variants in differentially expressed genes, associated with enriched gene ontologies and associated metabolic processes, lending potential insight into the genetic basis for different abscission responses between the cultivars. These results provide genetic targets for the induction or inhibition of PFAZ activation, depending on the desire to harvest the fruit with or without the stem attached. Understanding the genetic mechanisms underlying the development of the PFAZ will inform future cultivar development while laying a foundation for mechanized sweet cherry harvest.

6.
Front Plant Sci ; 11: 543958, 2020.
Article in English | MEDLINE | ID: mdl-33193478

ABSTRACT

Climacteric fruits are characterized by a dramatic increase in autocatalytic ethylene production that is accompanied by a spike in respiration at the onset of ripening. The change in the mode of ethylene production from autoinhibitory to autostimulatory is known as the System 1 (S1) to System 2 (S2) transition. Existing physiological models explain the basic and overarching genetic, hormonal, and transcriptional regulatory mechanisms governing the S1 to S2 transition of climacteric fruit. However, the links between ethylene and respiration, the two main factors that characterize the respiratory climacteric, have not been examined in detail at the molecular level. Results of recent studies indicate that the alternative oxidase (AOX) respiratory pathway may play an essential role in mediating cross-talk between ethylene response, carbon metabolism, ATP production, and ROS signaling during climacteric ripening. New genomic, metabolic, and epigenetic information sheds light on the interconnectedness of ripening metabolic pathways, necessitating an expansion of the current, ethylene-centric physiological models. Understanding points at which ripening responses can be manipulated may reveal key, species- and cultivar-specific targets for regulation of ripening, enabling superior strategies for reducing postharvest wastage.

7.
PeerJ ; 8: e9772, 2020.
Article in English | MEDLINE | ID: mdl-32913678

ABSTRACT

Subcellular relocalization of proteins determines an organism's metabolic repertoire and thereby its survival in unique evolutionary niches. In plants, the plastid and its various morphotypes import a large and varied number of nuclear-encoded proteins to orchestrate vital biochemical reactions in a spatiotemporal context. Recent comparative genomics analysis and high-throughput shotgun proteomics data indicate that there are a large number of plastid-targeted proteins that are either semi-conserved or non-conserved across different lineages. This implies that homologs are differentially targeted across different species, which is feasible only if proteins have gained or lost plastid targeting peptides during evolution. In this study, a broad, multi-genome analysis of 15 phylogenetically diverse genera and in-depth analyses of pangenomes from Arabidopsis and Brachypodium were performed to address the question of how proteins acquire or lose plastid targeting peptides. The analysis revealed that random insertions or deletions were the dominant mechanism by which novel transit peptides are gained by proteins. While gene duplication was not a strict requirement for the acquisition of novel subcellular targeting, 40% of novel plastid-targeted genes were found to be most closely related to a sequence within the same genome, and of these, 30.5% resulted from alternative transcription or translation initiation sites. Interestingly, analysis of the distribution of amino acids in the transit peptides of known and predicted chloroplast-targeted proteins revealed monocot and eudicot-specific preferences in residue distribution.

8.
Sci Rep ; 10(1): 8281, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427841

ABSTRACT

Plastids are morphologically and functionally diverse organelles that are dependent on nuclear-encoded, plastid-targeted proteins for all biochemical and regulatory functions. However, how plastid proteomes vary temporally, spatially, and taxonomically has been historically difficult to analyze at a genome-wide scale using experimental methods. A bioinformatics workflow was developed and evaluated using a combination of fast and user-friendly subcellular prediction programs to maximize performance and accuracy for chloroplast transit peptides and demonstrate this technique on the predicted proteomes of 15 sequenced plant genomes. Gene family grouping was then performed in parallel using modified approaches of reciprocal best BLAST hits (RBH) and UCLUST. A total of 628 protein families were found to have conserved plastid targeting across angiosperm species using RBH, and 828 using UCLUST. However, thousands of clusters were also detected where only one species had predicted plastid targeting, most notably in Panicum virgatum which had 1,458 proteins with species-unique targeting. An average of 45% overlap was found in plastid-targeted protein-coding gene families compared with Arabidopsis, but an additional 20% of proteins matched against the full Arabidopsis proteome, indicating a unique evolution of plastid targeting. Neofunctionalization through subcellular relocalization is known to impart novel biological functions but has not been described before on a genome-wide scale for the plastid proteome. Further work to correlate these predicted novel plastid-targeted proteins to transcript abundance and high-throughput proteomics will uncover unique aspects of plastid biology and shed light on how the plastid proteome has evolved to influence plastid morphology and biochemistry.


Subject(s)
Chloroplasts/metabolism , Computational Biology/methods , Magnoliopsida/metabolism , Protein Interaction Maps , Cluster Analysis , Computer Simulation , Genome Size , Plant Proteins/metabolism , Proteomics/methods , Workflow
9.
Sci Rep ; 10(1): 8478, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439928

ABSTRACT

European pear (Pyrus communis L.) cultivars require a genetically pre-determined duration of cold-temperature exposure to induce autocatalytic system 2 ethylene biosynthesis and subsequent fruit ripening. The physiological responses of pear to cold-temperature-induced ripening have been well characterized, but the molecular mechanisms underlying this phenomenon continue to be elucidated. This study employed previously established cold temperature conditioning treatments for ripening of two pear cultivars, 'D'Anjou' and 'Bartlett'. Using a time-course transcriptomics approach, global gene expression responses of each cultivar were assessed at four stages of developmental during the cold conditioning process. Differential expression, functional annotation, and gene ontology enrichment analyses were performed. Interestingly, evidence for the involvement of cold-induced, vernalization-related genes and repressors of endodormancy release was found. These genes have not previously been described to play a role in fruit during the ripening transition. The resulting data provide insight into cultivar-specific mechanisms of cold-induced transcriptional regulation of ripening in European pear, as well as a unique comparative analysis of the two cultivars with very different cold conditioning requirements.


Subject(s)
Cold Temperature , Flowers/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Plant Proteins/genetics , Pyrus/growth & development , Transcriptome , Flowers/growth & development , Fruit/genetics , Pyrus/genetics
10.
Sci Rep ; 10(1): 7084, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341384

ABSTRACT

1-methylcyclopropene (1-MCP) in an ethylene receptor antagonist that blocks ethylene perception and downstream ripening responses in climacteric fruit imparting a longer shelf life. However, in European pear, the application of 1-MCP irreversibly obstructs the onset of system 2 ethylene production resulting in perpetually unripe fruit with undesirable quality. Application of exogenous ethylene, carbon dioxide and treatment to high temperatures is not able to reverse the blockage in ripening. We recently reported that during cold conditioning, activation of alternative oxidase (AOX) occurs pre-climacterically. In this study, we report that activation of AOX via exposure of 1-MCP treated 'D'Anjou' pear fruit to glyoxylic acid triggers an accelerated ripening response. Time course physiological analysis revealed that ripening is evident from decreased fruit firmness and increased internal ethylene. Transcriptomic and functional enrichment analyses revealed genes and ontologies implicated in glyoxylic acid-mediated ripening, including AOX, TCA cycle, fatty acid metabolism, amino acid metabolism, organic acid metabolism, and ethylene-responsive pathways. These observations implicate the glyoxylate cycle as a biochemical hub linking multiple metabolic pathways to stimulate ripening through an alternate mechanism. The results provide information regarding how blockage caused by 1-MCP may be circumvented at the metabolic level, thus opening avenues for consistent ripening in pear and possibly other fruit.


Subject(s)
Cold Temperature , Cyclopropanes/pharmacology , Fruit/metabolism , Gene Expression Regulation, Plant/drug effects , Glyoxylates/metabolism , Plant Proteins/antagonists & inhibitors , Pyrus/metabolism , Receptors, Cell Surface/antagonists & inhibitors , Ethylenes/pharmacology , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Transcriptome/drug effects
11.
PLoS One ; 15(1): e0227429, 2020.
Article in English | MEDLINE | ID: mdl-31931517

ABSTRACT

Enhanced levels of antioxidants, phenolic compounds, carotenoids and vitamin C have been reported for several crops grown under organic fertilizer, albeit with yield penalties. As organic agricultural practices continue to grow and find favor it is critical to gain an understanding of the molecular underpinnings of the factors that limit the yields in organically farmed crops. Concomitant phytochemical and transcriptomic analysis was performed on mature fruit and leaf tissues derived from Solanum lycopersicum L. 'Oregon Spring' grown under organic and conventional fertilizer conditions to evaluate the following hypotheses. 1. Organic soil fertilizer management results in greater allocation of photosynthetically derived resources to the synthesis of secondary metabolites than to plant growth, and 2. Genes involved in changes in the accumulation of phytonutrients under organic fertilizer regime will exhibit differential expression, and that the growth under different fertilizer treatments will elicit a differential response from the tomato genome. Both these hypotheses were supported, suggesting an adjustment of the metabolic and genomic activity of the plant in response to different fertilizers. Organic fertilizer treatment showed an activation of photoinhibitory processes through differential activation of nitrogen transport and assimilation genes resulting in higher accumulation of phytonutrients. This information can be used to identify alleles for breeding crops that allow for efficient utilization of organic inputs.


Subject(s)
Fertilizers , Fruit/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Plant Leaves/growth & development , Solanum lycopersicum/growth & development , Gene Expression Regulation, Plant/physiology
12.
PLoS One ; 14(12): e0225886, 2019.
Article in English | MEDLINE | ID: mdl-31800597

ABSTRACT

European pears (Pyrus communis L.) require a range of cold-temperature exposure to induce ethylene biosynthesis and fruit ripening. Physiological and hormonal responses to cold temperature storage in pear have been well characterized, but the molecular underpinnings of these phenomena remain unclear. An established low-temperature conditioning model was used to induce ripening of 'D'Anjou' and 'Bartlett' pear cultivars and quantify the expression of key genes representing ripening-related metabolic pathways in comparison to non-conditioned fruit. Physiological indicators of pear ripening were recorded, and fruit peel tissue sampled in parallel, during the cold-conditioning and ripening time-course experiment to correlate gene expression to ontogeny. Two complementary approaches, Nonparametric Multi-Dimensional Scaling and efficiency-corrected 2-(ΔΔCt), were used to identify genes exhibiting the most variability in expression. Interestingly, the enhanced alternative oxidase (AOX) transcript abundance at the pre-climacteric stage in 'Bartlett' and 'D'Anjou' at the peak of the conditioning treatments suggests that AOX may play a key and a novel role in the achievement of ripening competency. There were indications that cold-sensing and signaling elements from ABA and auxin pathways modulate the S1-S2 ethylene transition in European pears, and that the S1-S2 ethylene biosynthesis transition is more pronounced in 'Bartlett' as compared to 'D'Anjou' pear. This information has implications in preventing post-harvest losses of this important crop.


Subject(s)
Climacteric/genetics , Cold Temperature , Fruit/physiology , Mitochondrial Proteins/genetics , Oxidoreductases/genetics , Plant Proteins/genetics , Pyrus/physiology , Transcription, Genetic
13.
PLoS One ; 13(10): e0205493, 2018.
Article in English | MEDLINE | ID: mdl-30308016

ABSTRACT

Drought is one of the main abiotic stresses with far-reaching ecological and socioeconomic impacts, especially in perennial food crops such as Prunus. There is an urgent need to identify drought resilient rootstocks that can adapt to changes in water availability. In this study, we tested the hypothesis that PEG-induced water limitation stress will simulate drought conditions and drought-related genes, including transcription factors (TFs), will be differentially expressed in response to this stress. 'Garnem' genotype, an almond × peach hybrid [P. amygdalus Batsch, syn P. dulcis (Mill.) x P. persica (L.) Batsch] was exposed to PEG-6000 solution, and a time-course transcriptome analysis of drought-stressed roots was performed at 0, 2 and 24 h time points post-stress. Transcriptome analysis resulted in the identification of 12,693 unique differentially expressed contigs (DECs) at the 2 h time point, and 7,705 unique DECs at the 24 h time point after initiation of the drought treatment. Interestingly, three drought-induced genes, directly related to water use efficiency (WUE) namely, ERF023 TF; LRR receptor-like serine/threonine-kinase ERECTA; and NF-YB3 TF, were found induced under stress. The RNAseq results were validated with quantitative RT-PCR analysis of eighteen randomly selected differentially expressed contigs (DECs). Pathway analysis in the present study provides valuable information regarding metabolic events that occur during stress-induced signalling in 'Garnem' roots. This information is expected to be useful in understanding the potential mechanisms underlying drought stress responses and drought adaptation strategies in Prunus species.


Subject(s)
Plant Roots/metabolism , Prunus/genetics , Prunus/metabolism , Stress, Physiological/physiology , Water/metabolism , Dehydration/genetics , Dehydration/metabolism , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Polyethylene Glycols , Stress, Physiological/genetics , Time Factors
14.
Agribusiness (N Y N Y) ; 34(2): 321-337, 2018.
Article in English | MEDLINE | ID: mdl-31354182

ABSTRACT

The North American fresh pear industry faces marketing challenges that could jeopardize its' long-term economic profitability. The production of sliced fresh pears is a promising alternative to overcome the lack of supplying consistently a product with superior quality with added convenience, potentially able to increase domestic consumption. In this paper, we used sensory evaluation and a Vickrey experimental auction to elicit consumers' preferences and willingness to pay for sliced packed fresh pears treated with SmartFresh™ (1-methylcyclopropene)and subsequently with a ripening compound (RC) in the form of glyoxylic acid at different concentration levels (1%, 2%, 3%, and control). Panelists were willing to pay a price premium equivalent to $0.119/2 oz packet for the 2% RC sample, $0.055/2 oz packet for the 3% RC sample, and $0.025/2 oz packet for the 1% RC sample compared to the control sample. Results from a market segmentation analyses indicate the presence of two groups in the panelist sample. The group that liked sliced pears assigned higher importance to locally grown fruit and price, shopped at conventional retailer grocery stores, had fewer children in the household, and were younger compared to the group that disliked sliced pears.

15.
J Cell Sci ; 131(2)2018 01 29.
Article in English | MEDLINE | ID: mdl-29074579

ABSTRACT

Plant morphogenesis relies on the accurate positioning of the partition (cell plate) between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which consists of microtubules, actin filaments, membrane compartments and associated proteins. The phragmoplast forms between daughter nuclei during the transition from anaphase to telophase. As cells are commonly larger than the originally formed phragmoplast, the construction of the cell plate requires phragmoplast expansion. This expansion depends on microtubule polymerization at the phragmoplast forefront (leading zone) and loss at the back (lagging zone). Leading and lagging zones sandwich the 'transition' zone. A population of stable microtubules in the transition zone facilitates transport of building materials to the midzone where the cell plate assembly takes place. Whereas microtubules undergo dynamic instability in all zones, the overall balance appears to be shifted towards depolymerization in the lagging zone. Polymerization of microtubules behind the lagging zone has not been reported to date, suggesting that microtubule loss there is irreversible. In this Review, we discuss: (1) the regulation of microtubule dynamics in the phragmoplast zones during expansion; (2) mechanisms of the midzone establishment and initiation of cell plate biogenesis; and (3) signaling in the phragmoplast.


Subject(s)
Cytokinesis , Microtubules/metabolism , Models, Biological , Molecular Motor Proteins/metabolism , Polymerization , Signal Transduction
16.
Comput Struct Biotechnol J ; 15: 290-298, 2017.
Article in English | MEDLINE | ID: mdl-28392892

ABSTRACT

Identification of genetic polymorphisms and subsequent development of molecular markers is important for marker assisted breeding of superior cultivars of economically important species. Sweet cherry (Prunus avium L.) is an economically important non-climacteric tree fruit crop in the Rosaceae family and has undergone a genetic bottleneck due to breeding, resulting in limited genetic diversity in the germplasm that is utilized for breeding new cultivars. Therefore, it is critical to recognize the best platforms for identifying genome-wide polymorphisms that can help identify, and consequently preserve, the diversity in a genetically constrained species. For the identification of polymorphisms in five closely related genotypes of sweet cherry, a gel-based approach (TRAP), reduced representation sequencing (TRAPseq), a 6k cherry SNParray, and whole genome sequencing (WGS) approaches were evaluated in the identification of genome-wide polymorphisms in sweet cherry cultivars. All platforms facilitated detection of polymorphisms among the genotypes with variable efficiency. In assessing multiple SNP detection platforms, this study has demonstrated that a combination of appropriate approaches is necessary for efficient polymorphism identification, especially between closely related cultivars of a species. The information generated in this study provides a valuable resource for future genetic and genomic studies in sweet cherry, and the insights gained from the evaluation of multiple approaches can be utilized for other closely related species with limited genetic diversity in the breeding germplasm.

SELECTION OF CITATIONS
SEARCH DETAIL
...