Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; : e5179, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808752

ABSTRACT

Deep learning presents a generalizable solution for motion correction requiring no pulse sequence modifications or additional hardware, but previous networks have all been applied to coil-combined data. Multichannel MRI data provide a degree of spatial encoding that may be useful for motion correction. We hypothesize that incorporating deep learning for motion correction prior to coil combination will improve results. A conditional generative adversarial network was trained using simulated rigid motion artifacts in brain images acquired at multiple sites with multiple contrasts (not limited to healthy subjects). We compared the performance of deep-learning-based motion correction on individual channel images (single-channel model) with that performed after coil combination (channel-combined model). We also investigate simultaneous motion correction of all channel data from an image volume (multichannel model). The single-channel model significantly (p < 0.0001) improved mean absolute error, with an average 50.9% improvement compared with the uncorrected images. This was significantly (p < 0.0001) better than the 36.3% improvement achieved by the channel-combined model (conventional approach). The multichannel model provided no significant improvement in quantitative measures of image quality compared with the uncorrected images. Results were independent of the presence of pathology, and generalizable to a new center unseen during training. Performing motion correction on single-channel images prior to coil combination provided an improvement in performance compared with conventional deep-learning-based motion correction. Improved deep learning methods for retrospective correction of motion-affected MR images could reduce the need for repeat scans if applied in a clinical setting.

2.
Magn Reson Med ; 91(4): 1528-1540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174443

ABSTRACT

PURPOSE: To demonstrate for the first time the feasibility of performing prospective motion correction using spherical navigators (SNAVs). METHODS: SNAVs were interleaved in a 3D FLASH sequence with an additional short baseline scan (6.8 s) for fast rotation estimation. Assessment of SNAV-based prospective motion correction was performed in six volunteers. Participant motion was guided using randomly generated stepwise prompts as well as prompts derived from real motion cases. Experiments were performed on a 3 T MRI scanner using a 32-channel head coil. RESULTS: When optimized for real-time application, SNAV-based motion estimates were computed in 25.8 ± 1.3 ms. Phantom-based quantification of rotation and translation accuracy indicated mean absolute errors of 0.10 ± 0.09° and 0.25 ± 0.14 mm, respectively. Implementing SNAV-based motion estimates for prospective motion correction led to a clear improvement in image quality with minimal increase in scan time (<5%). CONCLUSION: Optimization of SNAV processing for real-time application enables prospective motion correction with low latency and minimal scan time requirements.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Humans , Prospective Studies , Motion , Rotation , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Artifacts , Image Processing, Computer-Assisted/methods
3.
NMR Biomed ; 34(5): e4241, 2021 05.
Article in English | MEDLINE | ID: mdl-31898379

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a growing health problem, and a major challenge in NAFLD management is identifying which patients are at risk of progression to more serious disease. Simple measurements of liver fat content are not strong predictors of clinical outcome, but biomarkers related to fatty acid composition (ie, saturated vs. unsaturated fat) may be more effective. MR spectroscopic imaging (MRSI) methods allow spatially resolved, whole-liver measurements of chemical composition but are traditionally limited by slow acquisition times. In this work we present an accelerated MRSI acquisition based on spin echo single point imaging (SE-SPI), which, using appropriate sampling and compressed sensing reconstruction, allows free-breathing acquisition in a mouse model of fatty liver disease. After validating the technique's performance in oil/water phantoms, we imaged mice that had received a normal diet or a methionine and choline deficient (MCD) diet, some of which also received supplemental injections of iron to mimic hepatic iron overload. SE-SPI was more resistant to the line-broadening effects of iron than single-voxel spectroscopy measurements, and was consistently able to measure the amplitudes of low-intensity spectral peaks that are important to characterizing fatty acid composition. In particular, in the mice receiving the MCD diet, SE-SPI showed a significant decrease in a metric associated with unsaturated fat, which is consistent with the literature. This or other related metrics may therefore offer more a specific biomarker of liver health than fat content alone. This preclinical study is an important precursor to clinical testing of the proposed method. MR-based quantification of fatty acid composition may allow for improved characterization of non-alcoholic fatty liver disease. A spectroscopic imaging method with appropriate sampling strategy allows whole-liver mapping of fat composition metrics in a free-breathing mouse model. Changes in metrics like the surrogate unsaturation index (UIs) are visible in mice receiving a diet which induces fat accumulation in the liver, as compared to a normal diet; such metrics may prove useful in future clinical studies of liver disease.


Subject(s)
Data Compression , Fatty Acids/analysis , Magnetic Resonance Spectroscopy , Algorithms , Animals , Choline , Diet , Liver/diagnostic imaging , Magnetic Resonance Imaging , Methionine/deficiency , Mice, Inbred BALB C , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...