Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 611(7937): 801-809, 2022 11.
Article in English | MEDLINE | ID: mdl-36266581

ABSTRACT

Genome-wide association studies have identified risk loci linked to inflammatory bowel disease (IBD)1-a complex chronic inflammatory disorder of the gastrointestinal tract. The increasing prevalence of IBD in industrialized countries and the augmented disease risk observed in migrants who move into areas of higher disease prevalence suggest that environmental factors are also important determinants of IBD susceptibility and severity2. However, the identification of environmental factors relevant to IBD and the mechanisms by which they influence disease has been hampered by the lack of platforms for their systematic investigation. Here we describe an integrated systems approach, combining publicly available databases, zebrafish chemical screens, machine learning and mouse preclinical models to identify environmental factors that control intestinal inflammation. This approach established that the herbicide propyzamide increases inflammation in the small and large intestine. Moreover, we show that an AHR-NF-κB-C/EBPß signalling axis operates in T cells and dendritic cells to promote intestinal inflammation, and is targeted by propyzamide. In conclusion, we developed a pipeline for the identification of environmental factors and mechanisms of pathogenesis in IBD and, potentially, other inflammatory diseases.


Subject(s)
Environment , Herbicides , Inflammation , Inflammatory Bowel Diseases , Intestines , Animals , Mice , Inflammation/chemically induced , Inflammation/etiology , Inflammation/immunology , Inflammation/pathology , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Zebrafish , Machine Learning , Databases, Factual , Disease Models, Animal , Intestines/drug effects , Intestines/immunology , Intestines/metabolism , Intestines/pathology , NF-kappa B , CCAAT-Enhancer-Binding Protein-beta , Receptors, Aryl Hydrocarbon , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Herbicides/adverse effects
2.
Nat Med ; 27(7): 1212-1222, 2021 07.
Article in English | MEDLINE | ID: mdl-34183837

ABSTRACT

Inflammatory bowel disease (IBD) is a complex chronic inflammatory disorder of the gastrointestinal tract. Extracellular adenosine triphosphate (eATP) produced by the commensal microbiota and host cells activates purinergic signaling, promoting intestinal inflammation and pathology. Based on the role of eATP in intestinal inflammation, we developed yeast-based engineered probiotics that express a human P2Y2 purinergic receptor with up to a 1,000-fold increase in eATP sensitivity. We linked the activation of this engineered P2Y2 receptor to the secretion of the ATP-degrading enzyme apyrase, thus creating engineered yeast probiotics capable of sensing a pro-inflammatory molecule and generating a proportional self-regulated response aimed at its neutralization. These self-tunable yeast probiotics suppressed intestinal inflammation in mouse models of IBD, reducing intestinal fibrosis and dysbiosis with an efficacy similar to or higher than that of standard-of-care therapies usually associated with notable adverse events. By combining directed evolution and synthetic gene circuits, we developed a unique self-modulatory platform for the treatment of IBD and potentially other inflammation-driven pathologies.


Subject(s)
Adenosine Triphosphate/metabolism , Apyrase/metabolism , Inflammatory Bowel Diseases/therapy , Probiotics/therapeutic use , Receptors, Purinergic P2Y2/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Apyrase/genetics , CRISPR-Cas Systems/genetics , Disease Models, Animal , Dysbiosis/prevention & control , Female , Fibrosis/prevention & control , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Humans , Inflammatory Bowel Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Receptors, Purinergic P2Y2/genetics , Saccharomyces cerevisiae/genetics
3.
Science ; 372(6540)2021 04 23.
Article in English | MEDLINE | ID: mdl-33888612

ABSTRACT

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.


Subject(s)
Astrocytes/physiology , Cell Communication , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Microglia/physiology , Multiple Sclerosis/physiopathology , Single-Cell Analysis , Animals , Antigens, CD/metabolism , Brain/pathology , Brain/physiopathology , Central Nervous System/physiopathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Ephrin-B3/metabolism , Herpesvirus 1, Suid/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Multiple Sclerosis/pathology , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , RNA-Seq , Reactive Oxygen Species/metabolism , Receptor, EphB3/antagonists & inhibitors , Receptor, EphB3/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Signal Transduction , T-Lymphocytes/physiology , TOR Serine-Threonine Kinases/metabolism
4.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31813625

ABSTRACT

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Phospholipases A2, Secretory/metabolism , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Adaptor Proteins, Signal Transducing/genetics , Animals , Astrocytes/drug effects , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Hexokinase/metabolism , Humans , Lactic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phospholipases A2, Secretory/genetics
5.
Cell ; 176(3): 581-596.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30661753

ABSTRACT

Genome-wide studies have identified genetic variants linked to neurologic diseases. Environmental factors also play important roles, but no methods are available for their comprehensive investigation. We developed an approach that combines genomic data, screens in a novel zebrafish model, computational modeling, perturbation studies, and multiple sclerosis (MS) patient samples to evaluate the effects of environmental exposure on CNS inflammation. We found that the herbicide linuron amplifies astrocyte pro-inflammatory activities by activating signaling via sigma receptor 1, inositol-requiring enzyme-1α (IRE1α), and X-box binding protein 1 (XBP1). Indeed, astrocyte-specific shRNA- and CRISPR/Cas9-driven gene inactivation combined with RNA-seq, ATAC-seq, ChIP-seq, and study of patient samples suggest that IRE1α-XBP1 signaling promotes CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, MS. In summary, these studies define environmental mechanisms that control astrocyte pathogenic activities and establish a multidisciplinary approach for the systematic investigation of the effects of environmental exposure in neurologic disorders.


Subject(s)
Astrocytes/metabolism , Central Nervous System/metabolism , Animals , Central Nervous System/immunology , Computational Biology/methods , Encephalomyelitis, Autoimmune, Experimental/immunology , Endoribonucleases/metabolism , Environment , Environmental Exposure/adverse effects , Genome , Genomics , Humans , Inflammation/metabolism , Linuron/adverse effects , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Protein Serine-Threonine Kinases/metabolism , Receptors, sigma/drug effects , Receptors, sigma/metabolism , Signal Transduction , X-Box Binding Protein 1/metabolism , Zebrafish
6.
Nature ; 557(7707): 724-728, 2018 05.
Article in English | MEDLINE | ID: mdl-29769726

ABSTRACT

Microglia and astrocytes modulate inflammation and neurodegeneration in the central nervous system (CNS)1-3. Microglia modulate pro-inflammatory and neurotoxic activities in astrocytes, but the mechanisms involved are not completely understood4,5. Here we report that TGFα and VEGF-B produced by microglia regulate the pathogenic activities of astrocytes in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Microglia-derived TGFα acts via the ErbB1 receptor in astrocytes to limit their pathogenic activities and EAE development. Conversely, microglial VEGF-B triggers FLT-1 signalling in astrocytes and worsens EAE. VEGF-B and TGFα also participate in the microglial control of human astrocytes. Furthermore, expression of TGFα and VEGF-B in CD14+ cells correlates with the multiple sclerosis lesion stage. Finally, metabolites of dietary tryptophan produced by the commensal flora control microglial activation and TGFα and VEGF-B production, modulating the transcriptional program of astrocytes and CNS inflammation through a mechanism mediated by the aryl hydrocarbon receptor. In summary, we identified positive and negative regulators that mediate the microglial control of astrocytes. Moreover, these findings define a pathway through which microbial metabolites limit pathogenic activities of microglia and astrocytes, and suppress CNS inflammation. This pathway may guide new therapies for multiple sclerosis and other neurological disorders.


Subject(s)
Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/microbiology , Microglia/metabolism , Animals , Astrocytes/pathology , Cells, Cultured , Central Nervous System/metabolism , Central Nervous System/microbiology , Central Nervous System/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , ErbB Receptors/metabolism , Female , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Inflammation/prevention & control , Lipopolysaccharide Receptors/metabolism , Mice , Mice, Inbred C57BL , Microglia/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Receptors, Aryl Hydrocarbon/metabolism , Symbiosis , Transforming Growth Factor alpha/biosynthesis , Transforming Growth Factor alpha/metabolism , Tryptophan/deficiency , Tryptophan/metabolism , Vascular Endothelial Growth Factor B/biosynthesis , Vascular Endothelial Growth Factor B/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
7.
Sci Rep ; 8(1): 4970, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563571

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with important functions in the immune response and cancer. AHR agonists are provided by the environment, the commensal flora and the metabolism. Considering AHR physiological functions, AHR agonists may have important effects on health and disease. Thus, the quantification of AHR agonists in biological samples is of scientific and clinical relevance. We compared different reporter systems for the detection of AHR agonists in serum samples of Multiple Sclerosis (MS) patients, and assessed the influence of transfection methods and cell lines in a reporter-based in vitro assay. While the use of stable or transient reporters did not influence the measurement of AHR agonistic activity, the species of the cell lines used in these reporter assays had important effects on the reporter readings. These observations suggest that cell-specific factors influence AHR activation and signaling. Thus, based on the reported species selectivity of AHR ligands and the cell species-of-origin effects that we describe in this manuscript, the use of human cell lines is encouraged for the analysis of AHR agonistic activity in human samples. These findings may be relevant for the analysis of AHR agonists in human samples in the context of inflammatory and neoplastic disorders.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/agonists , Biological Assay/methods , Genes, Reporter , Multiple Sclerosis/blood , Receptors, Aryl Hydrocarbon/agonists , Adult , Aged , Animals , Basic Helix-Loop-Helix Transcription Factors/immunology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Environmental Pollutants/blood , Female , HEK293 Cells , Hep G2 Cells , Humans , Male , Mice , Middle Aged , Multiple Sclerosis/immunology , Receptors, Aryl Hydrocarbon/immunology , Receptors, Aryl Hydrocarbon/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...