Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 120(11): 1310-1318, 2018 12.
Article in English | MEDLINE | ID: mdl-30311593

ABSTRACT

The protein leverage hypothesis proposes that the need to prioritise protein intake drives excess energy intake (EI) when the dietary ratio of protein to fat and carbohydrate is reduced. We hypothesised that cats may become prone to overconsuming energy content when moderate protein diets were offered, and considered the potential influence of fat and carbohydrate on intake. To determine the effect of dietary protein and macronutrient profile (MNP) on EI, weight and body composition, cats (1-4 years) were offered food in excess of energy requirements (ER). A total of six diets were formulated, containing moderate (approximately 7 % w/w; approximately 22 % metabolisable energy (ME)) or high (approximately 10 % w/w; approximately 46 % ME) protein and varying levels of carbohydrate and fat. For 4 weeks, 120 cats were offered 100 % of their individual ER of a diet at the MNP selected by adult cats (50:40:10 protein energy ratio:fat energy ratio:carbohydrate energy ratio). EI, body weight (BW), body composition, activity and palatability were measured. Subsequently, cats were offered one of the six diets at 200 % of their individual ER for 4 weeks when measurements were repeated. Cats offered excess high protein diets had higher EI (kJ/kg) throughout, but at 4 weeks BW was not significantly different to baseline. Cats offered excess moderate protein diets reduced EI and gradually lost weight (average loss of 0·358 (99 % CI 0·388, 0·328) kg), irrespective of fat:carbohydrate and initial palatability. The data do not support the protein leverage hypothesis. Furthermore, cats were able to adapt intake of a wet diet with high protein in an overfeeding environment within 28 d.


Subject(s)
Animal Feed/analysis , Body Weight , Diet/veterinary , Dietary Proteins/administration & dosage , Nutrients/administration & dosage , Animal Nutritional Physiological Phenomena , Animals , Body Composition , Cats , Dietary Carbohydrates/administration & dosage , Dietary Fats , Eating , Energy Intake , Energy Metabolism , Female , Linear Models , Male , Random Allocation
2.
R Soc Open Sci ; 3(6): 160081, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27429768

ABSTRACT

There is a large body of research demonstrating that macronutrient balancing is a primary driver of foraging in herbivores and omnivores, and more recently, it has been shown to occur in carnivores. However, the extent to which macronutrient selection in carnivores may be influenced by organoleptic properties (e.g. flavour/aroma) remains unknown. Here, we explore the roles of nutritional and hedonic factors in food choice and macronutrient balancing in a mammalian carnivore, the domestic cat. Using the geometric framework, we determined the amounts and ratio of protein and fat intake in cats allowed to select from combinations of three foods that varied in protein : fat (P : F) composition (approx. 10 : 90, 40 : 60 and 70 : 30 on a per cent energy basis) to which flavours of different 'attractiveness' (fish, rabbit and orange) were added. In two studies, in which animal and plant protein sources were used, respectively, the ratio and amounts of protein and fat intake were very consistent across all groups regardless of flavour combination, indicating regulation of both protein and fat intake. Our results suggest that macronutrient balancing rather than hedonistic rewards based on organoleptic properties of food is a primary driver of longer-term food selection and intake in domestic cats.

3.
J Comp Physiol B ; 183(4): 525-36, 2013 May.
Article in English | MEDLINE | ID: mdl-23233166

ABSTRACT

We investigated the ability of domestic cats to regulate the macronutrient composition of their diet when provided with foods that differed not only in macronutrient content but also in texture and moisture content, as typically found in the main forms of commercially manufactured cat foods. Cats were provided with foods in different combinations (1 wet + 3 dry; 1 dry + 3 wet; 3 wet + 3 dry) in three separate experiments. Within each experiment cats were offered the wet and dry food combinations in two (naïve and experienced) diet selection phases where all the foods were offered simultaneously, separated by a phase in which the foods were offered sequentially in 3-day cycles in pairs (1 wet with 1 dry). Using nutritional geometry we demonstrate convergence upon the same dietary macronutrient composition in the naïve and experienced self-selection phases of each experiment as well as over the course of the 3-day cycles in the pair-wise choice phase of each experiment. Furthermore, even though the dietary options were very different in each of these experiments the macronutrient composition of the diets achieved across all experiments were remarkably similar. These results indicate that a mammalian obligate carnivore, the domestic cat, is able to regulate food selection and intake to balance macronutrient intake despite differences in moisture content and textural properties of the foods provided.


Subject(s)
Diet/veterinary , Energy Intake , Food Analysis , Food Preferences , Animals , Cats , Female , Male , Water/analysis
4.
Behav Ecol ; 24(1): 293-304, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23243377

ABSTRACT

Although many herbivores and omnivores have been shown to balance their intake of macronutrients when faced with nutritionally variable foods, study of this ability has been relatively neglected in carnivores, largely on the assumption that prey are less variable in nutrient composition than the foods of herbivores and omnivores and such mechanisms therefore unnecessary. We performed diet selection studies in 5 breeds of adult dog (Canis lupus familiaris) to determine whether these domesticated carnivores regulate macronutrient intake. Using nutritional geometry, we show that the macronutrient content of the diet was regulated to a protein:fat:carbohydrate ratio of approximately 30%:63%:7% by energy, a value that was remarkably similar across breeds. These values, which the analysis suggests are dietary target values, are based on intakes of dogs with prior experience of the respective experimental food combinations. On initial exposure to the diets (i.e., when naive), the same dogs self-selected a diet that was marginally but significantly lower in fat, suggesting that learning played a role in macronutrient regulation. In contrast with the tight regulation of macronutrient ratios, the total amount of food and energy eaten was far higher than expected based on calculated maintenance energy requirements. We interpret these results in relation to the evolutionary history of domestic dogs and compare them to equivalent studies on domestic cats.

5.
Br J Nutr ; 106 Suppl 1: S101-4, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22005400

ABSTRACT

Data from intravenous (i.v.) glucose tolerance tests suggest that glucose clearance from the blood is slower in cats than in dogs. Since different physiological pathways are activated following oral administration compared with i.v. administration, we investigated the profiles of plasma glucose and insulin in cats and dogs following ingestion of a test meal with or without glucose. Adult male and female cats and dogs were fed either a high-protein (HP) test meal (15 g/kg body weight; ten cats and eleven dogs) or a HP + glucose test meal (13 g/kg body-weight HP diet + 2 g/kg body-weight D-glucose; seven cats and thirteen dogs) following a 24 h fast. Marked differences in plasma glucose and insulin profiles were observed in cats and dogs following ingestion of the glucose-loaded meal. In cats, mean plasma glucose concentration reached a peak at 120 min (10.2, 95 % CI 9.7, 10.8 mmol/l) and returned to baseline by 240 min, but no statistically significant change in plasma insulin concentration was observed. In dogs, mean plasma glucose concentration reached a peak at 60 min (6.3, 95 % CI 5.9, 6.7 mmol/l) and returned to baseline by 90 min, while plasma insulin concentration was significantly higher than pre-meal values from 30 to 120 min following the glucose-loaded meal. These results indicate that cats are not as efficient as dogs at rapidly decreasing high blood glucose levels and are consistent with a known metabolic adaptation of cats, namely a lack of glucokinase, which is important for both insulin secretion and glucose uptake from the blood.


Subject(s)
Animal Feed/analysis , Blood Glucose , Cats/metabolism , Dogs/metabolism , Glucose/metabolism , Insulin/blood , Animal Nutritional Physiological Phenomena , Animals , Cats/blood , Diet/veterinary , Dogs/blood , Female , Glucokinase/metabolism , Glucose/pharmacokinetics , Insulin/metabolism , Male , Postprandial Period , Species Specificity
6.
Br J Nutr ; 106 Suppl 1: S105-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22005401

ABSTRACT

A charge made against feeding dry foods to cats is that the high carbohydrate (i.e. starch) content results in high blood glucose levels which over time may have detrimental health effects. The present study determined the post-meal concentrations of plasma glucose and insulin in adult cats (seven males and four females) and dogs (Labrador retrievers; four males and five females) fed dry diets with low-starch (LS), moderate-starch (MS) or high-starch (HS) levels. In a cross-over design with at least 7 d between the test meals, plasma glucose and insulin concentrations were measured following a single meal of a LS, MS and HS diet (209 kJ/kg bodyweight). Only the HS diet resulted in significant post-meal increases in plasma glucose concentration in cats and dogs although the time-course profiles were different between the species. In cats, plasma glucose concentration was significantly increased above the pre-meal concentration from 11 h until 19 h after the meal, while in dogs, a significant increase above baseline was seen only at the 7 h time point. Plasma insulin was significantly elevated in dogs 4-8 h following the MS diet and 2-8 h after the HS diet. In cats, plasma insulin was significantly greater than baseline from 3-7 and 11-17 h after the HS diet. The time lag (approximately 11 h) between eating the HS diet and the subsequent prolonged elevation of plasma glucose concentration seen in cats may reflect metabolic adaptations that result in a slower digestive and absorptive capacity for complex carbohydrate.


Subject(s)
Blood Glucose/metabolism , Cats/metabolism , Dietary Carbohydrates/pharmacology , Dogs/metabolism , Insulin/blood , Starch/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Cats/blood , Diet/veterinary , Dogs/blood , Female , Insulin/metabolism , Male , Postprandial Period , Species Specificity
7.
J Exp Biol ; 214(Pt 6): 1039-51, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21346132

ABSTRACT

We report feeding studies on adult domestic cats designed to disentangle the complex interactions among dietary protein, fat and carbohydrate in the control of intake. Using geometric techniques that combine mixture triangles and intake plots from the geometric framework, we: (1) demonstrate that cats balance their macronutrient intake, (2) estimate the composition of the target balance and (3) reveal the priorities given to different macronutrients under dietary conditions where the target is unachievable. Our analysis indicates that cats have a ceiling for carbohydrate intake, which limits ingestion and constrains them to deficits in protein and fat intake (relative to their target) on high-carbohydrate foods. Finally, we reanalyse data from a previous experiment that claimed that kittens failed to regulate protein intake, and show that, in fact, they did. These results not only add to the growing appreciation that carnivores, like herbivores and omnivores, regulate macronutrient intake, they also have important implications for designing feeding regimens for companion animals.


Subject(s)
Aging/physiology , Animals, Domestic/physiology , Cats/physiology , Food Preferences/physiology , Food , Animals , Body Weight/physiology , Diet , Dietary Carbohydrates/analysis , Dietary Fats/analysis , Dietary Proteins/analysis , Energy Metabolism/physiology , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...