Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 121(18): 11527-11652, 2021 09 22.
Article in English | MEDLINE | ID: mdl-33939409

ABSTRACT

The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.


Subject(s)
Nucleic Acids , Gene Editing , Gene Transfer Techniques , Genetic Therapy/methods , Polymers/chemistry
2.
Biomacromolecules ; 21(4): 1379-1392, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32118406

ABSTRACT

The improvement of nonviral gene therapies relies to a large extent on understanding many fundamental physical and biological properties of these systems. This includes interactions of synthetic delivery systems with the cell and mechanisms of trafficking delivery vehicles, which remain poorly understood on both the extra- and intracellular levels. In this study, the mechanisms of cellular internalization and trafficking of polymer-based nanoparticle complexes consisting of polycations and nucleic acids, termed polyplexes, have been observed in detail at the cellular level. For the first time evidence has been obtained that filopodia, actin projections that radiate out from the surface of cells, serve as a route for the direct endocytosis of polyplexes. Confocal microscopy images demonstrated that filopodia on HeLa cells detect external polyplexes and extend into the extracellular milieu to internalize these particles. Polyplexes are observed to be internalized into membrane-bound vesicles (i.e., clathrin-coated pits and caveolae) directly within filopodial projections and are subsequently transported along actin to the main cell body for potential delivery of the nucleic acids to the nucleus. The kinetics and speed of polyplex trafficking have also been measured. The polyplex-loaded vesicles were also discovered to traffic between two cells within filopodial bridges. These findings provide novel insight into the early events of cellular contact with polyplexes through filopodial-based interactions in addition to endocytic vesicle trafficking-an important fundamental discovery to enable advancement of nonviral gene editing, nucleic acid therapies, and biomedical materials.


Subject(s)
Endocytosis , Pseudopodia , Caveolae , Genetic Therapy , HeLa Cells , Humans , Transfection
3.
Acc Chem Res ; 52(5): 1347-1358, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30993967

ABSTRACT

The field of gene therapy, which aims to treat patients by modulating gene expression, has come to fruition and has landed several landmark FDA approvals. Most gene therapies currently rely on viral vectors to deliver nucleic acid cargo into cells, but there is significant interest in moving toward chemical-based methods, such as polymer-based vectors, due to their low cost, immunocompatibility, and tunability. The full potential of polymer-based delivery systems has yet to be realized, however, because most polymeric transfection reagents are either too inefficient or too toxic for use in the clinic. In this Account, we describe developments in carbohydrate-based cationic polymers, termed glycopolymers, for enhanced nonviral gene delivery. As ubiquitous components of biological systems, carbohydrates are a rich class of compounds that can be harnessed to improve the biocompatibility of non-native polymers, such as linear polyamines used for promoting transfection. Reineke et al. developed a new class of carbohydrate-based polymers called poly(glycoamidoamine)s (PGAAs) by step-growth polymerization of linear monosaccharides with linear ethyleneamines. These glycopolymers were shown to be both efficient and biocompatible transfection reagents. Systematic modifications of the structural components of the PGAA system revealed structure-activity relationships important to its function, including its ability to degrade in situ. Expanding upon the development of step-growth glycopolymers, monosaccharides, such as glucose, were functionalized as vinyl-based monomers for the formation of diblock copolymers via radical addition-fragmentation chain-transfer (RAFT) polymerization. Upon complexation with plasmid DNA, the glucose-containing block creates a hydrophilic shell that promotes colloidal stability as effectively as PEG functionalization. An N-acetyl-d-galactosamine variant of this diblock polymer yields colloidally stable particles that show increased receptor-mediated uptake by liver hepatocytes in vitro and promotes liver targeting in mice. Finally, the disaccharide trehalose was incorporated into polycationic structures using both step-growth and RAFT techniques. It was shown that these trehalose-based copolymers imparted increased colloidal stability and yielded plasmid and siRNA polyplexes that resist aggregation upon lyophilization and reconstitution in water. The aforementioned series of glycopolymers use carbohydrates to promote effective and safe delivery of nucleic acid cargo into a variety of human cells types by promoting vehicle degradation, tissue-targeting, colloidal stabilization, and stability toward lyophilization to extend shelf life. Work is currently underway to translate the use of glycopolymers for safe and efficient delivery of nucleic acid cargo for gene therapy and gene editing applications.


Subject(s)
Acrylic Resins/chemistry , DNA/pharmacokinetics , Gene Transfer Techniques , Monosaccharides/chemistry , Acrylic Resins/chemical synthesis , Animals , Cell Line, Tumor , Humans , Mice , Molecular Structure , Monosaccharides/chemical synthesis , Polymerization , Structure-Activity Relationship
4.
Biomacromolecules ; 20(4): 1530-1544, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30919629

ABSTRACT

Genome editing therapies hold great promise for the cure of monogenic and other diseases; however, the application of nonviral gene delivery methods is limited by both a lack of fundamental knowledge of interactions of the gene-carrier in complex animals and biocompatibility. Herein, we characterize nonviral gene delivery vehicle formulations that are based on diblock polycations containing a hydrophilic and neutral glucose block chain extended with cationic secondary amines of three lengths, poly(methacrylamido glucopyranose- block-2-methylaminoethyl methacrylate) [P(MAG- b-MAEMt)-1, -2, -3]. These polymers were formulated with plasmid DNA to prepare polyelectrolyte complexes (polyplexes). In addition, two controls, P(EG- b-MAEMt) and P(MAEMt), were synthesized, formulated into polyplexes and the ex vivo hemocompatibility, or blood compatibility, and in vivo biodistribution of the formulations were compared to the glycopolymers. While both polymer structure and N/P (amine to phosphate) ratio were important factors affecting hemocompatibility, N/P ratio played a stronger role in determining polyplex biodistribution. P(EG- b-MAEMt) and P(MAEMt) lysed red blood cells at both high and low N/P formulations while P(MAG- b-MAEMt) did not significantly lyse cells at either formulation at short and medium polymer lengths. Conversely, P(MAG- b-MAEMt) did not affect coagulation at N/P = 5, but significantly delayed coagulation at N/P = 15. P(EG- b-MAEMt) and P(MAEMt) did not affect coagulation at either formulation. After polymer and pDNA cargo distribution was observed in vivo, P(EG- b-MAEMt) N/P = 5 and P(MAG- b-MAEMt) N/P = 5 both dissociated and deposited polymer in the liver, while pDNA cargo from P(MAG- b-MAEMt) N/P = 15 was found in the liver, lungs, and spleen. The contrast between P(MAG- b-MAEMt) at N/P = 5 and 15 demonstrates that polyplex stability in the blood can be improved with N/P ratio and potentially aid polyplex biodistribution through simply varying the formulation ratios.


Subject(s)
DNA , Gene Transfer Techniques , Materials Testing , Plasmids , Polyelectrolytes , Animals , DNA/chemistry , DNA/pharmacokinetics , DNA/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Methacrylates/pharmacology , Mice , Plasmids/chemistry , Plasmids/pharmacokinetics , Plasmids/pharmacology , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacokinetics , Polyelectrolytes/pharmacology , Tissue Distribution
5.
Nat Commun ; 6: 8526, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26446751

ABSTRACT

In striated muscle, X-ROS is the mechanotransduction pathway by which mechanical stress transduced by the microtubule network elicits reactive oxygen species. X-ROS tunes Ca(2+) signalling in healthy muscle, but in diseases such as Duchenne muscular dystrophy (DMD), microtubule alterations drive elevated X-ROS, disrupting Ca(2+) homeostasis and impairing function. Here we show that detyrosination, a post-translational modification of α-tubulin, influences X-ROS signalling, contraction speed and cytoskeletal mechanics. In the mdx mouse model of DMD, the pharmacological reduction of detyrosination in vitro ablates aberrant X-ROS and Ca(2+) signalling, and in vivo it protects against hallmarks of DMD, including workload-induced arrhythmias and contraction-induced injury in skeletal muscle. We conclude that detyrosinated microtubules increase cytoskeletal stiffness and mechanotransduction in striated muscle and that targeting this post-translational modification may have broad therapeutic potential in muscular dystrophies.


Subject(s)
Microtubules/physiology , Muscle Fibers, Skeletal/physiology , Myocytes, Cardiac/physiology , Animals , Biomechanical Phenomena , Calcium , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Microscopy, Atomic Force , Rats , Rats, Sprague-Dawley
6.
Bioorg Med Chem ; 23(15): 4737-4745, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26088334

ABSTRACT

Parthenolide (PTL) is a sesquiterpene lactone natural product with anti-proliferative activity to cancer cells. Selective eradication of leukemic stem cells (LSCs) over healthy hematopoietic stem cells (HSCs) by PTL has been demonstrated in previous studies, which suggests PTL and related molecules may be useful for targeting LSCs. Eradication of LSCs is required for curative therapy. Chemical optimizations of PTL to improve potency and pharmacokinetic parameters have focused largely on the α-methylene-γ-butyrolactone, which is essential for activity. Conversely, we evaluated modifications to the C1-C10 olefin and benchmarked new inhibitors to PTL with respect to inhibitory potency across a panel of cancer cell lines, ability to target drug-resistant acute myeloid leukemia (AML) cells, efficacy for inhibiting clonal growth of AML cells, toxicity to healthy bone marrow cells, and efficiency for promoting intracellular reactive oxygen species (ROS) levels. Cyclopropane 4 was found to possess less toxicity to healthy bone marrow cells, enhanced potency for the induction of cellular ROS, and similar broad-spectrum anti-proliferative activity to cancer cells in comparison to PTL.


Subject(s)
Antineoplastic Agents/chemical synthesis , Sesquiterpenes/chemistry , Alkenes/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Design , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Mice , Molecular Conformation , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Sesquiterpenes/chemical synthesis , Sesquiterpenes/pharmacology
7.
Bioorg Med Chem Lett ; 25(12): 2493-5, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25978958

ABSTRACT

LC-1 (also known as DMAPT or dimethylamino-parthenolide), a prodrug of parthenolide, was tested for anti-proliferative activity against glioma. LC-1 was found to have low micromolar cytotoxic activity against three glioma cell lines and was also found to be brain penetrant in healthy mice (2.1-3.0 brain-to-plasma ratio). In a syngeneic GL261 murine glioma model, LC-1 slowed tumor growth kinetics and extended the survival time of tumor-bearing mice in comparison to the vehicle control. Consequently, LC-1 represents a promising lead compound for further development as a glioma therapy.


Subject(s)
Prodrugs/chemistry , Sesquiterpenes/chemistry , Animals , Brain/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Glioma/drug therapy , Glioma/mortality , Glioma/pathology , Half-Life , Kaplan-Meier Estimate , Mice , Prodrugs/pharmacokinetics , Prodrugs/therapeutic use , Sesquiterpenes/pharmacokinetics , Sesquiterpenes/therapeutic use
8.
Org Lett ; 15(11): 2644-7, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23662902

ABSTRACT

Syntheses of two 6,12-guaianolide analogs are reported within. The scope of the tandem allylboration/lactonization chemistry is expanded to provide a functionalized allene-yne-containing α-methylene butyrolactone that undergoes a Rh(I)-catalyzed cyclocarbonylation reaction to afford a 5-7-5 ring system. The resulting cycloadducts bear a structural resemblance to other NF-κB inhibitors such as cumambrin A and indeed were shown to inhibit NF-κB signaling and cancer cell growth.


Subject(s)
Alkadienes/chemistry , NF-kappa B/antagonists & inhibitors , NF-kappa B/chemistry , Rhodium/chemistry , Sesquiterpenes, Guaiane/chemical synthesis , Catalysis , Humans , Molecular Structure , NF-kappa B/metabolism , Oxidation-Reduction , Sesquiterpenes, Guaiane/chemistry , Signal Transduction , Stereoisomerism
9.
ACS Med Chem Lett ; 3(6): 459-464, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22866208

ABSTRACT

A series of structurally simplified cryptocaryone analogues were synthesized by a facile Pd-catalyzed acetoxylation of alkyne-tethered cyclohexadienones and evaluated as inhibitors of NF-κB signaling. Compounds 10 and 11 were found to possess low micromolar inhibitory properties towards induced NF-κB activity by blocking p50/p65 nuclear protein through a covalent inhibition mechanism. Both compounds were able to inhibit NF-κB-induced IL-8 expression and exhibited antiproliferative activity against two model cancer cell lines. These analogues constitute a promising new scaffold for the development of novel NF-κB inhibitors and anticancer agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...