Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(21): 216701, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38072597

ABSTRACT

While the concepts of quantum many-body integrability and chaos are of fundamental importance for the understanding of quantum matter, their precise definition has so far remained an open question. In this Letter, we introduce an alternative indicator for quantum many-body integrability and chaos, which is based on the statistics of eigenstates by means of nearest-neighbor subsystem trace distances. We show that this provides us with a faithful classification through extensive numerical simulations for a large variety of paradigmatic model systems including random matrix theories, free fermions, Bethe-ansatz solvable systems, and models of many-body localization. While existing indicators, such as those obtained from level-spacing statistics, have already been utilized with great success, they also face limitations. This concerns, for instance, the quantum many-body kicked top, which is exactly solvable but classified as chaotic in certain regimes based on the level-spacing statistics, while our introduced indicator signals the expected quantum many-body integrability. We discuss the universal behaviors we observe for the nearest-neighbor trace distances and point out that our indicator might be useful also in other contexts such as for the many-body localization transition.

2.
Phys Rev Lett ; 131(23): 230402, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134792

ABSTRACT

The fission of a string connecting two charges is an astounding phenomenon in confining gauge theories. The dynamics of this process have been studied intensively in recent years, with plenty of numerical results yielding a dichotomy: the confining string can decay relatively fast or persist up to extremely long times. Here, we put forward a dynamical localization transition as the mechanism underlying this dichotomy. To this end, we derive an effective string breaking description in the light-meson sector of a confined spin chain and show that the problem can be regarded as a dynamical localization transition in Fock space. Fast and suppressed string breaking dynamics are identified with delocalized and localized behavior, respectively. We then provide a further reduction of the dynamical string breaking problem onto a quantum impurity model, where the string is represented as an "impurity" immersed in a meson bath. It is shown that this model features a localization-delocalization transition, giving a general and simple physical basis to understand the qualitatively distinct string breaking regimes. These findings are directly relevant for a wider class of confining lattice models in any dimension and could be realized on present-day Rydberg quantum simulators.

3.
Phys Rev Lett ; 131(22): 220402, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101388

ABSTRACT

We show that certain lattice gauge theories exhibiting disorder-free localization have a characteristic response in spatially averaged spectral functions: a few sharp peaks combined with vanishing response in the zero frequency limit. This reflects the discrete spectra of small clusters of kinetically active regions formed in such gauge theories when they fragment into spatially finite clusters in the localized phase due to the presence of static charges. We obtain the transverse component of the dynamic structure factor, which is probed by neutron scattering experiments, deep in this phase from a combination of analytical estimates and a numerical cluster expansion. We also show that local spectral functions of large finite clusters host discrete peaks whose positions agree with our analytical estimates. Further, information spreading, diagnosed by an unequal time commutator, halts due to real space fragmentation. Our results can be used to distinguish the disorder-free localized phase from conventional paramagnetic counterparts in those frustrated magnets which might realize such an emergent gauge theory.

4.
Phys Rev Lett ; 131(4): 046501, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566857

ABSTRACT

Spectral functions are central to link experimental probes to theoretical models in condensed matter physics. However, performing exact numerical calculations for interacting quantum matter has remained a key challenge especially beyond one spatial dimension. In this work, we develop a versatile approach using neural quantum states to obtain spectral properties based on simulations of the dynamics of excitations initially localized in real or momentum space. We apply this approach to compute the dynamical structure factor in the vicinity of quantum critical points (QCPs) of different two-dimensional quantum Ising models, including one that describes the complex density wave orders of Rydberg atom arrays. When combined with deep network architectures we find that our method reliably describes dynamical structure factors of arrays with up to 24×24 spins, including the diverging timescales at critical points. Our approach is broadly applicable to interacting quantum lattice models in two dimensions and consequently opens up a route to compute spectral properties of correlated quantum matter in yet inaccessible regimes.

5.
Phys Rev E ; 107(3-1): 034119, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37072977

ABSTRACT

We present the analysis of the slowing down exhibited by stochastic dynamics of a ring-exchange model on a square lattice, by means of numerical simulations. We find the preservation of coarse-grained memory of initial state of density-wave types for unexpectedly long times. This behavior is inconsistent with the prediction from a low frequency continuum theory developed by assuming a mean-field solution. Through a detailed analysis of correlation functions of the dynamically active regions, we exhibit an unconventional transient long ranged structure formation in a direction which is featureless for the initial condition, and argue that its slow melting plays a crucial role in the slowing-down mechanism. We expect our results to be relevant also for the dynamics of quantum ring-exchange dynamics of hard-core bosons and more generally for dipole moment conserving models.

6.
Sci Adv ; 8(37): eabl6850, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36112684

ABSTRACT

The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior near the quantum phase transitions (QPTs). It is now well understood for the one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge, complicated by the fundamentally different character of the associated QPTs and their underlying conformal field theories. In this work, we take the first steps toward theoretical exploration of the QKZM in two dimensions for interacting quantum matter. We study the dynamical crossing of the QPT in the paradigmatic Ising model by a joint effort of modern state-of-the-art numerical methods, including artificial neural networks and tensor networks. As a central result, we quantify universal QKZM behavior close to the QPT. We also note that, upon traversing further into the ferromagnetic regime, deviations from the QKZM prediction appear. We explain the observed behavior by proposing an extended QKZM taking into account spectral information as well as phase ordering. Our work provides a testing platform for higher-dimensional quantum simulators.

7.
Phys Rev Lett ; 127(11): 110502, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34558930

ABSTRACT

Digital quantum simulation on quantum computers provides the potential to simulate the unitary evolution of any many-body Hamiltonian with bounded spectrum by discretizing the time evolution operator through a sequence of elementary quantum gates. A fundamental challenge in this context originates from experimental imperfections, which critically limits the number of attainable gates within a reasonable accuracy and therefore the achievable system sizes and simulation times. In this work, we introduce a reinforcement learning algorithm to systematically build optimized quantum circuits for digital quantum simulation upon imposing a strong constraint on the number of quantum gates. With this we consistently obtain quantum circuits that reproduce physical observables with as little as three entangling gates for long times and large system sizes up to 16 qubits. As concrete examples we apply our formalism to a long-range Ising chain and the lattice Schwinger model. Our method demonstrates that digital quantum simulation on noisy intermediate scale quantum devices can be pushed to much larger scale within the current experimental technology by a suitable engineering of quantum circuits using reinforcement learning.

8.
Phys Rev Lett ; 127(5): 050601, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397239

ABSTRACT

In this work, we combine quantum renormalization group approaches with deep artificial neural networks for the description of the real-time evolution in strongly disordered quantum matter. We find that this allows us to accurately compute the long-time coherent dynamics of large many-body localized systems in nonperturbative regimes including the effects of many-body resonances. Concretely, we use this approach to describe the spatiotemporal buildup of many-body localized spin-glass order in random Ising chains. We observe a fundamental difference to a noninteracting Anderson insulating Ising chain, where the order only develops over a finite spatial range. We further apply the approach to strongly disordered two-dimensional Ising models, highlighting that our method can be used also for the description of the real-time dynamics of nonergodic quantum matter in a general context.

9.
Phys Rev Lett ; 125(10): 100503, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32955321

ABSTRACT

The efficient numerical simulation of nonequilibrium real-time evolution in isolated quantum matter constitutes a key challenge for current computational methods. This holds in particular in the regime of two spatial dimensions, whose experimental exploration is currently pursued with strong efforts in quantum simulators. In this work we present a versatile and efficient machine learning inspired approach based on a recently introduced artificial neural network encoding of quantum many-body wave functions. We identify and resolve key challenges for the simulation of time evolution, which previously imposed significant limitations on the accurate description of large systems and long-time dynamics. As a concrete example, we study the dynamics of the paradigmatic two-dimensional transverse-field Ising model, as recently also realized experimentally in systems of Rydberg atoms. Calculating the nonequilibrium real-time evolution across a broad range of parameters, we, for instance, observe collapse and revival oscillations of ferromagnetic order and demonstrate that the reached timescales are comparable to or exceed the capabilities of state-of-the-art tensor network methods.

10.
Light Sci Appl ; 9: 7, 2020.
Article in English | MEDLINE | ID: mdl-31993125

ABSTRACT

Quantum processes of inherent dynamical nature, such as quantum walks, defy a description in terms of an equilibrium statistical physics ensemble. Until now, identifying the general principles behind the underlying unitary quantum dynamics has remained a key challenge. Here, we show and experimentally observe that split-step quantum walks admit a characterization in terms of a dynamical topological order parameter (DTOP). This integer-quantized DTOP measures, at a given time, the winding of the geometric phase accumulated by the wavefunction during a quantum walk. We observe distinct dynamical regimes in our experimentally realized quantum walks, and each regime can be attributed to a qualitatively different temporal behavior of the DTOP. Upon identifying an equivalent many-body problem, we reveal an intriguing connection between the nonanalytic changes of the DTOP in quantum walks and the occurrence of dynamical quantum phase transitions.

11.
Phys Rev B ; 102(1)2020.
Article in English | MEDLINE | ID: mdl-34131609

ABSTRACT

String breaking is a central dynamical process in theories featuring confinement, where a string connecting two charges decays at the expense of the creation of new particle-antiparticle pairs. Here, we show that this process can also be observed in quantum Ising chains where domain walls get confined either by a symmetry-breaking field or by long-range interactions. We find that string breaking occurs, in general, as a two-stage process. First, the initial charges remain essentially static and stable. The connecting string, however, can become a dynamical object. We develop an effective description of this motion, which we find is strongly constrained. In the second stage, which can be severely delayed due to these dynamical constraints, the string finally breaks. We observe that the associated timescale can depend crucially on the initial separation between domain walls and can grow by orders of magnitude by changing the distance by just a few lattice sites. We discuss how our results generalize to one-dimensional confining gauge theories and how they can be made accessible in quantum simulator experiments such as Rydberg atoms or trapped ions.

12.
Phys Rev Lett ; 122(25): 250401, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31347880

ABSTRACT

Quantum link models (QLMs) are extensions of Wilson-type lattice gauge theories which realize exact gauge invariance with finite-dimensional Hilbert spaces. QLMs not only reproduce standard features of Wilson lattice gauge theories in equilibrium, but can also host new phenomena such as crystalline confined phases. The local constraints due to gauge invariance also provide kinetic restrictions that can influence substantially the real-time dynamics in these systems. We aim to characterize the nonequilibrium evolution in lattice gauge theories through the lens of dynamical quantum phase transitions, which provide general principles for real-time dynamics in quantum many-body systems. Specifically, we study quantum quenches for two representative cases, U(1) QLMs in (1+1)D and (2+1)D, for initial conditions exhibiting long-range order. Finally, we discuss the connection to the high-energy perspective and the experimental feasibility to observe the discussed phenomena in recent quantum simulator settings such as trapped ions, ultracold atoms, and Rydberg atoms.

13.
Nat Commun ; 10(1): 2254, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113948

ABSTRACT

Exceptional points (EPs) are ubiquitous in non-Hermitian systems, and represent the complex counterpart of critical points. By driving a system through a critical point at finite rate induces defects, described by the Kibble-Zurek mechanism, which finds applications in diverse fields of physics. Here we generalize this to a ramp across an EP. We find that adiabatic time evolution brings the system into an eigenstate of the final non-Hermitian Hamiltonian and demonstrate that for a variety of drives through an EP, the defect density scales as τ-(d + z)ν/(zν + 1) in terms of the usual critical exponents and 1/τ the speed of the drive. Defect production is suppressed compared to the conventional Hermitian case as the defect state can decay back to the ground state close to the EP. We provide a physical picture for the studied dynamics through a mapping onto a Lindblad master equation with an additionally imposed continuous measurement.

14.
Sci Adv ; 5(4): eaau8342, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30993199

ABSTRACT

A fundamental challenge in digital quantum simulation (DQS) is the control of an inherent error, which appears when discretizing the time evolution of a quantum many-body system as a sequence of quantum gates, called Trotterization. Here, we show that quantum localization-by constraining the time evolution through quantum interference-strongly bounds these errors for local observables, leading to an error independent of system size and simulation time. DQS is thus intrinsically much more robust than suggested by known error bounds on the global many-body wave function. This robustness is characterized by a sharp threshold as a function of the Trotter step size, which separates a localized region with controllable Trotter errors from a quantum chaotic regime. Our findings show that DQS with comparatively large Trotter steps can retain controlled errors for local observables. It is thus possible to reduce the number of gate operations required to represent the desired time evolution faithfully.

15.
Phys Rev Lett ; 121(1): 016801, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-30028149

ABSTRACT

Out-of-time-ordered (OTO) correlators have developed into a central concept quantifying quantum information transport, information scrambling, and quantum chaos. In this Letter, we show that such an OTO correlator can also be used to dynamically detect equilibrium as well as nonequilibrium phase transitions in Ising chains. We study OTO correlators of an order parameter both in equilibrium and after a quantum quench for different variants of transverse-field Ising models in one dimension, including the integrable one as well as nonintegrable and long-range extensions. We find for all the studied models that the OTO correlator in ground states detects the quantum phase transition. After a quantum quench from a fully polarized state, we observe numerically for the short-range models that the asymptotic long-time value of the OTO correlator signals still the equilibrium critical points and ordered phases. For the long-range extension, the OTO correlator instead determines a dynamical quantum phase transition in the model. We discuss how our findings can be observed in current experiments of trapped ions or Rydberg atoms.

16.
Phys Rev Lett ; 120(13): 130601, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694182

ABSTRACT

We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α, which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α≤2. The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α≤2. We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.

17.
Rep Prog Phys ; 81(5): 054001, 2018 05.
Article in English | MEDLINE | ID: mdl-29446351

ABSTRACT

Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

18.
Phys Rev Lett ; 120(3): 030601, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400521

ABSTRACT

We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters-in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.

19.
Phys Rev Lett ; 121(26): 260401, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30636128

ABSTRACT

Ultracold atoms in optical lattices provide clean, tunable, and well-isolated realizations of paradigmatic quantum lattice models. With the recent advent of quantum-gas microscopes, they now also offer the possibility to measure the occupations of individual lattice sites. What, however, has not yet been achieved is to measure those elements of the single-particle density matrix, which are off- diagonal in the occupation basis. Here, we propose a scheme to access these basic quantities both for fermions as well as hard-core bosons and investigate its accuracy and feasibility. The scheme relies on the engineering of a large effective tunnel coupling between distant lattice sites and a protocol that is based on measuring site occupations after two subsequent quenches.

20.
Phys Rev Lett ; 119(1): 016802, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28731748

ABSTRACT

We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t-V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the noninteracting localized phase where some memory is always preserved.

SELECTION OF CITATIONS
SEARCH DETAIL
...