Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 326: 154-164, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28286284

ABSTRACT

This study investigated the behavioral and biochemical parameters of DM1 as a risk factor in an animal model of schizophrenia (SZ). All groups: 1 Control (saline+saline); 2 Alloxan (alloxan+saline); 3 Ketamine (saline+ketamine); 4 (Alloxan+Ketamine) were fasted for a period of 18h before the subsequent induction of DM via a single intraperitoneal (i.p) injection of alloxan (150mg/kg). From the 4th to the 10th days, the animals were injected i.p with ketamine (25mg/kg) or saline, once a day, to induce a model of SZ and 30min after the last administration were subjected to behavioral testing. After, the animals were decapitated and the brain structures were removed. Ketamine induced hyperactivity and in the social interaction, ketamine, alloxan and the association of alloxan+ketamine increased the latency and decreased the number of contacts between animals. The animals from the ketamine, alloxan and alloxan+ketamine groups showed a prepulse startle reflex (PPI) deficit at the three intensities (65, 70 and 75dB). Ketamine was shown to be capable of increasing the activity of acetylcholinesterase (AChE) in the brain structures. Combination of alloxan+ketamine seems to have an exacerbated effect within the cholinergic system. For lipid peroxidation and protein carbonyls, alloxan+ketamine appear to have intensified lipid and protein damage in the three structures. Ketamine and the combination of ketamine+alloxan induced DNA damage in both frequency and damage index. This research found a relationship between DM1 and SZ.


Subject(s)
Alloxan/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 1/complications , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Prepulse Inhibition/drug effects , Reflex, Startle/drug effects , Schizophrenia/etiology , Social Behavior , Alloxan/administration & dosage , Animals , Diabetes Mellitus, Type 1/chemically induced , Disease Models, Animal , Excitatory Amino Acid Antagonists/administration & dosage , Ketamine/administration & dosage , Male , Rats , Rats, Wistar , Risk Factors , Schizophrenia/chemically induced
2.
Article in English | MEDLINE | ID: mdl-28229913

ABSTRACT

Cigarette smoking during the prenatal period has been investigated as a causative factor of obstetric abnormalities, which lead to cognitive and behavioural changes associated with schizophrenia. The aim of this study was to investigate behaviour and AChE activity in brain structures in adult rats exposed to cigarette smoke during the prenatal period. Pregnant rats were divided into non-PCSE (non-prenatal cigarette smoke exposure) and PCSE (prenatal cigarette smoke exposure) groups. On post-natal day 60, the rats received saline or ketamine for 7days and were subjected to behavioural tasks. In the locomotor activity task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited increased locomotor activity compared with the saline group. In the social interaction task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited an increased latency compared with the control groups. However, the PCSE+ketamine group exhibited a decreased latency compared with the non-PCSE+ketamine group, which indicates that the cigarette exposure appeared to decrease, the social deficits generated by ketamine. In the inhibitory avoidance task, the non-PCSE+ketamine, PCSE, and PCSE+ketamine groups exhibited impairments in working memory, short-term memory, and long-term memory. In the pre-pulse inhibition (PPI) test, cigarette smoke associated with ketamine resulted in impaired PPI in 3 pre-pulse (PP) intensity groups compared with the control groups. In the biochemical analysis, the AChE activity in brain structures increased in the ketamine groups; however, the PCSE+ketamine group exhibited an exacerbated effect in all brain structures. The present study indicates that exposure to cigarette smoke during the prenatal period may affect behaviour and cerebral cholinergic structures during adulthood.


Subject(s)
Prenatal Exposure Delayed Effects/physiopathology , Schizophrenia/etiology , Smoking/adverse effects , Acetylcholinesterase/metabolism , Analysis of Variance , Animals , Animals, Newborn , Avoidance Learning/drug effects , Choline O-Acetyltransferase/metabolism , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Exploratory Behavior/drug effects , Female , Inhibition, Psychological , Interpersonal Relations , Ketamine/pharmacology , Ketamine/therapeutic use , Male , Pregnancy , Prepulse Inhibition/drug effects , Rats, Wistar , Schizophrenia/drug therapy
3.
J Psychiatr Res ; 81: 23-35, 2016 10.
Article in English | MEDLINE | ID: mdl-27367209

ABSTRACT

Recent studies have shown benefits for the supplementation of folic acid in schizophrenic patients. The aim of this study was to evaluate the effects of folic acid addition on adult rats, over a period of 7 or 14 days. It also sets out to verify any potential protective action using an animal model of schizophrenia induced by ketamine, in behavioral and biochemical parameters. This study used two protocols (acute and chronic) for the administration of ketamine at a dose of 25 mg/kg (i.p.). The folic acid was given by oral route in doses of 5, 10 and 50 mg/kg, once daily, for 7 and/or 14 days in order to compare the protective effects of folic acid. Thirty minutes after the last administration of ketamine, the locomotor and social interaction activities were evaluated, and immediately the brain structure were removed for biochemical analysis. In this study, ketamine was administered in a single dose or in doses over the course of 7 days increasing the animal's locomotion. This study showed that the administration of folic acid over 7 days was unable to prevent hyper locomotion. In contrast, folic acid (10 and 50 mg/kg) administrated over a period of 14 days, was able to partially prevent the hyper locomotion. Our data indicates that both acute and chronic administrations of ketamine increased the time to first contact between the animals, while the increased latency for social contact was completely prevented by folic acid (5, 10 and 50 mg/kg). Chronic and acute administrations of ketamine also increased lipid peroxidation and protein carbonylation in brain. Folic acid (10 and 50 mg/kg) supplements showed protective effects on the oxidative damage found in the different brain structures evaluated. All together, the results indicate that nutritional supplementation with folic acid provides promising results in an animal model of schizophrenia induced by ketamine.


Subject(s)
Attention Deficit and Disruptive Behavior Disorders/drug therapy , Attention Deficit and Disruptive Behavior Disorders/etiology , Folic Acid/therapeutic use , Oxidative Stress/drug effects , Schizophrenia/complications , Vitamin B Complex/therapeutic use , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/toxicity , Interpersonal Relations , Ketamine/toxicity , Lipid Metabolism/drug effects , Locomotion/drug effects , Male , Malondialdehyde/metabolism , Protein Carbonylation/drug effects , Rats , Rats, Wistar , Schizophrenia/chemically induced , Superoxide Dismutase/metabolism , Time Factors
4.
An Acad Bras Cienc ; 87(2 Suppl): 1475-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26397829

ABSTRACT

New studies suggest that polyunsaturated fatty acids, such as omega-3, may reduce the symptoms of schizophrenia. The present study evaluated the preventive effect of omega-3 on interleukines (IL) and neurotrophin brain-derived neurotrophic factor (BDNF) levels in the brains of young rats subjected to a model of schizophrenia. Treatment was performed over 21 days, starting on the 30th day of rat's life. After 14 days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25 mg/kg) was started and maintained until the last day of the experiment. BDNF levels in the rat's prefrontal cortex were decreased at 1 h and 24 h after the last administration of ketamine, whereas the group administered with ketamine and omega-3 showed a decrease in BDNF levels only after 24 h. In contrast, both interventions induced similar responses in levels of IL-1ß and IL6. These findings suggest that the similarity of IL-1ß and IL6 levels in our experimental groups is due to the mechanism of action of ketamine on the immune system. More studies have to be carried out to explain this pathology. In conclusion, according to previous studies and considering the current study, we could suggest a prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia.


Subject(s)
Brain Chemistry , Brain-Derived Neurotrophic Factor/analysis , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Interleukins/analysis , Ketamine/administration & dosage , Schizophrenia/prevention & control , Animals , Brain-Derived Neurotrophic Factor/drug effects , Disease Models, Animal , Male , Rats , Rats, Wistar
5.
An Acad Bras Cienc ; 87(2 Suppl): 1389-95, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26247155

ABSTRACT

Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p.) or vehicle (2% Tween 80). Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.


Subject(s)
Acetylcholinesterase/metabolism , Amphetamines/pharmacology , Appetite Depressants/pharmacology , Brain/enzymology , Animals , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Male , Rats , Rats, Wistar
6.
Metab Brain Dis ; 28(3): 501-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23775300

ABSTRACT

Schizophrenia is one of the most disabling mental disorders that affects up to 1 % of the population worldwide. Although the causes of this disorder remain unknown, it has been extensively characterized by a broad range of emotional, ideational and cognitive impairments. Studies indicate that schizophrenia affects neurotransmitters such as dopamine, glutamate and acetylcholine. Recent studies suggest that rivastigmine (an acetylcholinesterase inhibitor) is important to improve the cognitive symptoms of schizophrenia. Therefore, the present study evaluated the protective effect of rivastigmine against the ketamine-induced behavioral (hyperlocomotion and cognitive deficit) and biochemical (increase of acetylcholinesterase activity) changes which characterize an animal model of schizophrenia in rats. Our results indicated that rivastigmine was effective to improve the cognitive deficit in different task (immediate memory, long term memory and short term memory) induced by ketamine in rats. Moreover, we observed that rivastigmina reversed the increase of acetylcholinesterase activity induced by ketamine in the cerebral cortex, hippocampus and striatum. However, rivastigmine was not able to prevent the ketamine-induced hyperlocomotion. In conslusion, ours results indicate that cholinergic system might be an important therapeutic target in the physiopathology of schizophrenia, mainly in the cognition, but additional studies should be carried.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cognition Disorders/chemically induced , Cognition Disorders/psychology , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Neuroprotective Agents/pharmacology , Phenylcarbamates/pharmacology , Schizophrenia/chemically induced , Analysis of Variance , Animals , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Brain/drug effects , Brain/enzymology , Electroshock , Male , Memory/drug effects , Memory, Short-Term/drug effects , Motor Activity/drug effects , Rats , Rats, Wistar , Rivastigmine , Schizophrenia/enzymology , Schizophrenic Psychology
7.
J Psychiatr Res ; 47(6): 740-6, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23472836

ABSTRACT

Prenatal cigarette smoke exposure (PCSE) has been associated with physiological and developmental changes that may be related to an increased risk for childhood and adult neuropsychiatric diseases. The present study investigated locomotor activity and cholinesterase enzyme activity in rats, following PCSE and/or ketamine treatment in adulthood. Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day for a period of 28 days. We evaluated motor activity and cholinesterase activity in the brain and serum of adult male offspring that were administered acute subanesthetic doses of ketamine (5, 15 and 25 mg/kg), which serves as an animal model of schizophrenia. To determine locomotor activity, we used the open field test. Cholinesterase activity was assessed by hydrolysis monitored spectrophotometrically. Our results show that both PCSE and ketamine treatment in the adult offspring induced increase of locomotor activity. Additionally, it was observed increase of acetylcholinesterase and butyrylcholinesterase activity in the brain and serum, respectively. We demonstrated that animals exposed to cigarettes in the prenatal period had increased the risk for psychotic symptoms in adulthood. This also occurs in a dose-dependent manner. These changes provoke molecular events that are not completely understood and may result in abnormal behavioral responses found in neuropsychiatric disorders, such as schizophrenia.


Subject(s)
Cholinesterases/drug effects , Prenatal Exposure Delayed Effects/physiopathology , Schizophrenia/physiopathology , Smoke/adverse effects , Tobacco Products/adverse effects , Animals , Disease Models, Animal , Female , Ketamine/administration & dosage , Ketamine/pharmacology , Maternal Exposure/adverse effects , Motor Activity/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/enzymology , Rats , Rats, Wistar , Schizophrenia/chemically induced , Schizophrenia/enzymology , Time Factors
8.
Schizophr Res ; 141(2-3): 162-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22954755

ABSTRACT

Omega-3 has shown efficacy to prevent schizophrenia conversion in ultra-high risk population. We evaluated the efficacy of omega-3 in preventing ketamine-induced effects in an animal model of schizophrenia and its effect on brain-derived neurotrophic factor (BDNF). Omega-3 or vehicle was administered in Wistar male rats, both groups at the 30th day of life for 15days. Each group was split in two to receive along the following 7days ketamine or saline. Locomotor and exploratory activities, memory test and social interaction between pairs were evaluated at the 52nd day of life. Prefrontal-cortex, hippocampus and striatum tissues were extracted right after behavioral tasks for mRNA BDNF expression analysis. Bloods for serum BDNF were withdrawn 24h after the end of behavioral tasks. Locomotive was increased in ketamine-treated group compared to control, omega-3 and ketamine plus omega-3 groups. Ketamine group had fewer contacts and interaction compared to other groups. Working memory and short and long-term memories were significantly impaired in ketamine group compared to others. Serum BDNF levels were significantly higher in ketamine plus omega-3 group. There was no difference between groups in prefrontal-cortex, hippocampus and striatum for mRNA BDNF expression. Administration of omega-3 in adolescent rats prevents positive, negative and cognitive symptoms in a ketamine animal model of schizophrenia. Whether these findings are consequence of BDNF increase it is unclear. However, this study gives compelling evidence for larger clinical trials to confirm the use of omega-3 to prevent schizophrenia and for studies to reinforce the beneficial role of omega-3 in brain protection.


Subject(s)
Cognition Disorders/prevention & control , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Schizophrenia/complications , Schizophrenia/diet therapy , Analysis of Variance , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Brain/metabolism , Brain/pathology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Excitatory Amino Acid Antagonists/toxicity , Humans , Inhibition, Psychological , Interpersonal Relations , Ketamine/toxicity , Male , Motor Activity/drug effects , Motor Activity/physiology , RNA, Messenger/metabolism , Rats , Rats, Wistar , Schizophrenia/chemically induced , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...