Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(15): 3317-3325, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28610984

ABSTRACT

Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Urea/analogs & derivatives , Urea/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytokines/chemistry , Cytokines/metabolism , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Isoindoles/chemistry , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Isoindoles/therapeutic use , Mice , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/therapeutic use
2.
Mol Cancer Ther ; 16(7): 1236-1245, 2017 07.
Article in English | MEDLINE | ID: mdl-28468779

ABSTRACT

Cancer cells are highly reliant on NAD+-dependent processes, including glucose metabolism, calcium signaling, DNA repair, and regulation of gene expression. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ salvage from nicotinamide, has been investigated as a target for anticancer therapy. Known NAMPT inhibitors with potent cell activity are composed of a nitrogen-containing aromatic group, which is phosphoribosylated by the enzyme. Here, we identified two novel types of NAM-competitive NAMPT inhibitors, only one of which contains a modifiable, aromatic nitrogen that could be a phosphoribosyl acceptor. Both types of compound effectively deplete cellular NAD+, and subsequently ATP, and produce cell death when NAMPT is inhibited in cultured cells for more than 48 hours. Careful characterization of the kinetics of NAMPT inhibition in vivo allowed us to optimize dosing to produce sufficient NAD+ depletion over time that resulted in efficacy in an HCT116 xenograft model. Our data demonstrate that direct phosphoribosylation of competitive inhibitors by the NAMPT enzyme is not required for potent in vitro cellular activity or in vivo antitumor efficacy. Mol Cancer Ther; 16(7); 1236-45. ©2017 AACR.


Subject(s)
Colorectal Neoplasms/drug therapy , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Calcium Signaling/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cytokines/genetics , DNA Repair/drug effects , Enzyme Activation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Mice , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 22(14): 4750-5, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22695126

ABSTRACT

In an effort to identify kinase inhibitors with dual KDR/Aurora B activity and improved aqueous solubility compared to the Abbott dual inhibitor ABT-348, a series of novel pyrazole pyrimidines structurally related to kinase inhibitor AS703569 were prepared. SAR work provided analogs with significant cellular activity, measureable aqueous solubility and moderate antitumor activity in a mouse tumor model after weekly ip dosing. Unfortunately these compounds were pan-kinase inhibitors that suffered from narrow therapeutic indices which prohibited their use as antitumor agents.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Amination , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinase B , Aurora Kinases , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Molecular , Molecular Structure , Pyrimidines/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem Lett ; 22(9): 3208-12, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22465635

ABSTRACT

In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Urea/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Mice , Protein Kinase Inhibitors/chemistry , Vascular Endothelial Growth Factor A
5.
Bioorg Med Chem Lett ; 17(5): 1246-9, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17188869

ABSTRACT

A series of substituted thienopyridine ureas was prepared and evaluated for enzymatic and cellular inhibition of KDR kinase activity. Several of these analogs, such as 2, are potent inhibitors of KDR (<10 nM) in both enzymatic and cellular assays. Further characterization of inhibitor 2 indicated that this analog possessed excellent in vivo potency (ED50 2.1 mg/kg) as measured in an estradiol-induced mouse uterine edema model.


Subject(s)
Pyridines/chemical synthesis , Urea/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Disease Models, Animal , Edema/chemically induced , Estradiol , Female , Mice , Models, Molecular , Pyridines/pharmacology , Structure-Activity Relationship , Urea/chemistry , Urea/pharmacology , Uterine Diseases/pathology
6.
Bioorg Med Chem Lett ; 14(17): 4505-9, 2004 Sep 06.
Article in English | MEDLINE | ID: mdl-15357981

ABSTRACT

A series of substituted isoindolinone ureas was prepared and evaluated for enzymatic and cellular inhibition of KDR kinase activity. Several of these analogs, such as 14c, are potent inhibitors of KDR both enzymatically (< 50 nM) and cellularly < or = 100 nM). A 3D KDR/CDK2/MAP kinase overlay model with several structurally related tyrosine kinase inhibitors was used to predict the binding interactions of the isoindolinone ureas with the KDR active site.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indoles/chemistry , Urea/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Humans , Indoles/pharmacology , Mice , NIH 3T3 Cells , Urea/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
7.
Bioorg Med Chem Lett ; 13(22): 3909-13, 2003 Nov 17.
Article in English | MEDLINE | ID: mdl-14592473

ABSTRACT

Several heterocyclic ketones were investigated as potential inhibitors of histone deacetylase. Nanomolar inhibitors such as 22 and 25 were obtained, the anti-proliferative activity of which were shown to be mediated by HDAC inhibition.


Subject(s)
Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Histone Deacetylase Inhibitors , Ketones/pharmacology , Enzyme Inhibitors/chemistry , Ketones/chemistry , Kinetics , Structure-Activity Relationship
9.
J Med Chem ; 45(1): 219-32, 2002 Jan 03.
Article in English | MEDLINE | ID: mdl-11754593

ABSTRACT

A novel series of sulfone N-formylhydroxylamines (retrohydroxamates) have been investigated as matrix metalloproteinases (MMP) inhibitors. The substitution of the ether linkage of ABT-770 (5) with a sulfone group 13a led to a substantial increase in activity against MMP-9 but was accompanied by a loss of selectivity for inhibition of MMP-2 and -9 over MMP-1 and diminished oral exposure. Replacement of the biphenyl P1' substituent with a phenoxyphenyl group provided compounds that are highly selective for inhibition of MMP-2 and -9 over MMP-1. Optimization of the substituent adjacent to the retrohydroxamate center in this series led to the clinical candidate ABT-518 (6), a highly potent, selective, orally bioavailable MMP inhibitor that has been shown to significantly inhibit tumor growth in animal cancer models.


Subject(s)
Antineoplastic Agents/chemical synthesis , Formamides/chemical synthesis , Hydroxylamines/chemical synthesis , Metalloendopeptidases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line , Formamides/chemistry , Formamides/pharmacokinetics , Formamides/pharmacology , Hydroxylamines/chemistry , Hydroxylamines/pharmacokinetics , Hydroxylamines/pharmacology , Macaca fascicularis , Matrix Metalloproteinase Inhibitors , Mice , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...