Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 53: 110227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38435737

ABSTRACT

This paper shares an experimental dataset of lithium-ion battery parallel-connected modules. The campaign, conducted at the Stanford Energy Control Laboratory, employs a comprehensive full factorial Design of Experiment methodology on ladder-configured parallel strings. A total of 54 test conditions were investigated under various operating temperatures, cell-to-cell interconnection resistance, cell chemistry, and aging levels. The module-level testing procedure involved Constant Current Constant Voltage (CC-CV) charging and Constant Current (CC) discharge. Beyond monitoring total module current and voltage, Hall sensors and thermocouples were employed to measure the signals from each individual cell to quantify both current and temperature distribution within each tested module configuration. Additionally, the dataset contains cell characterization data for every cell (i.e. NCA Samsung INR21700-50E and NMC LG-Chem INR21700-M50T) used in the module-level experiments. This dataset provides valuable resources for developing battery physics-based, empirical, and data-driven models at single cell and module level. Ultimately, it contributes to advance our understanding of how cell-to-cell heterogeneity propagates within the module and how that affects the overall system performance.

2.
Rev Sci Instrum ; 91(6): 064902, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32611034

ABSTRACT

The laser flash method is highly regarded due to its applicability to a wide temperature range, from cryogenic temperatures to the melting point of refractory metals, and to extreme environments involving radioactive or hazardous materials. Although instruments implementing this method are mostly produced on a commercial basis by major manufacturers, there is always room for improvement both in terms of experimental methods and data treatment procedures. The measurement noise, either due to the detector performance or electromagnetic interferences, presents a significant problem when accurate determination of thermal properties is desired. Noise resilience of the laser flash method is rarely mentioned in the published literature; there are currently no data treatment procedures that could guarantee adequate performance under any operating conditions. In this paper, a computational framework combining finite-difference solutions of the heat conduction problem with nonlinear optimization techniques based on the use of quasi-Newton direction search and stochastic linear search with the Wolfe conditions is presented. The application of this framework to data with varying level of noise is considered. Finally, cross-verification and validation using an external standard, a commercial, and an in-house built laser flash instrument are presented. The open-source software implementing the described computational method is benchmarked against its industrial counterpart.

SELECTION OF CITATIONS
SEARCH DETAIL
...