Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medchemcomm ; 8(3): 606-615, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-30108776

ABSTRACT

Carvedilol is a widely prescribed drug for the treatment of heart failure and the prevention of associated ventricular arrhythmias. It has also been reported to function as a biological antioxidant via hydrogen atom transfer from its carbazole N-H moiety to chain-propagating radicals. Metabolites of the drug include phenolic derivatives, such as 3-hydroxy-, 4'-hydroxy- and 5'-hydroxycarvedilol, which are also potential antioxidants. A comparison of the radical-inhibiting activities of the parent drug and the three metabolites was carried out in two separate assays. In the first, hydrogen atom transfer from these four compounds to the stable radical DPPH was measured by the decrease in the UV-visible absorption at 515 nm of the latter. The known radical inhibitors BHT, 4-hydroxycarbazole and α-tocopherol were employed as benchmarks in parallel experiments. In the second assay, inhibition of the photoinduced free-radical 1,2-addition of Se-phenyl p-tolueneselenosulfonate to cyclopropylacetylene, along with competing ring-opening of the cyclopropane ring, was monitored by 1H NMR spectroscopy in the presence of the carvedilol-based and benchmark antioxidants. In both assays, carvedilol displayed negligible antioxidant activity, while the three metabolites all proved superior radical inhibitors to BHT, with radical-quenching abilities in the order 3-hydroxy- > 5'-hydroxy > 4'-hydroxycarvedilol. Among the metabolites, 3-hydroxycarvedilol displayed even stronger activity in both assays than α-tocopherol, the best of the benchmark antioxidants. These results suggest that the radical-inhibiting antioxidant properties that have been attributed to carvedilol are largely or exclusively due to its metabolites and not to the parent drug itself.

2.
Environ Microbiol ; 11(10): 2491-509, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19555372

ABSTRACT

Microbiological metal toxicity involves redox reactions between metal species and cellular molecules, and therefore, we hypothesized that antioxidant systems might be chromosomal determinants affecting the susceptibility of bacteria to metal toxicity. Here, survival was quantified in metal ion-exposed planktonic cultures of several Escherichia coli strains, each bearing a mutation in a gene important for redox homeostasis. This characterized approximately 250 gene-metal combinations and identified that sodA, sodB, gor, trxA, gshA, grxA and marR have distinct roles in safeguarding or sensitizing cells to different toxic metal ions (Cr(2)O(7)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), AsO(2)(-), SeO(3)(2-) or TeO(3)(2-)). To shed light on these observations, fluorescent sensors for reactive oxygen species (ROS) and reduced thiol (RSH) quantification were used to ascertain that different metal ions exert oxidative toxicity through disparate modes-of-action. These oxidative mechanisms of metal toxicity were categorized as involving ROS and thiol-disulfide chemistry together (AsO(2)(-), SeO(3)(2-)), ROS predominantly (Cu(2+), Cr(2)O(7)(2-)) or thiol-disulfide chemistry predominantly (Ag(+), Co(2+), Zn(2+), TeO(3)(2-)). Corresponding to this, promoter-luxCDABE fusions showed that toxic doses of different metal ions up- or downregulate the transcription of gene sets marking distinct pathways of cellular oxidative stress. Altogether, our findings suggest that different metal ions are lethal to cells through discrete pathways of oxidative biochemistry, and moreover, indicate that chromosomally encoded antioxidant systems may have metal ion-specific physiological roles as determinants of bacterial metal tolerance.


Subject(s)
Adaptation, Physiological/genetics , Chromosomes, Bacterial/genetics , Escherichia coli/metabolism , Genes, Bacterial , Metals/metabolism , Anions/chemistry , Antioxidants/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cations/chemistry , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Metals/chemistry , Oxidation-Reduction , Repressor Proteins/genetics , Repressor Proteins/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
3.
Biophys Chem ; 114(1): 53-61, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15792861

ABSTRACT

Electron spin resonance (ESR) spectroscopy with nitroxide spin probes was used as a method to probe the liposome microenvironments. The effective microviscosities have been determined from the calibration of the ESR spectra of the probes in solvent mixtures of known viscosities. In the first time, by measuring ESR order parameter (S) and correlation time (tau(c)) of stearic spin probes, we have been able to quantify the value of effective microviscosity at different depths inside the liposome membrane. At room temperature, local microviscosities measured in dimyristoyl-l-alpha phosphatidylcholine (DMPC) liposome membrane at the different depths of 7.8, 16.95, and 27.7 A were 222.53, 64.09, and 62.56 cP, respectively. In the gel state (10 degrees C), those microviscosity values increased to 472.56, 370.61, and 243.37 cP. In a second time, we have applied this technique to determine the modifications in membrane microviscosity induced by 2,6-diisopropyl phenol (propofol; PPF), an anaesthetic agent extensively used in clinical practice. Propofol is characterized by a unique phenolic structure, absent in the other conventional anaesthetics. Indeed, given its lipophilic property, propofol is presumed to penetrate into and interact with membrane lipids and hence to induce changes in membrane fluidity. Incorporation of propofol into dimyristoyl-l-alpha phosphatidylcholine liposomes above the phase-transition temperature (23.9 degrees C) did not change microviscosity. At 10 degrees C, an increase of propofol concentration from 0 to 1.0 x 10(-2) M for a constant lipid concentration mainly induced a decrease in microviscosity. This fluidity effect of propofol has been qualitatively confirmed using merocyanine 540 (MC540) as lipid packing probe. Above 10(-2) M propofol, no further decrease in microviscosity was observed, and the microviscosity at the studied depths (7.8, 16.95, and 27.7 A) amounted 260.21, 123.87, and 102.27 cP, respectively. The concentration 10(-2) M was identified as the saturation limit of propofol in dimyristoyl-l-alpha phosphatidylcholine liposomes.


Subject(s)
Lipid Bilayers , Liposomes/chemistry , Membrane Fluidity/drug effects , Propofol/pharmacology , Biophysical Phenomena , Biophysics , Dimyristoylphosphatidylcholine/chemistry , Electron Spin Resonance Spectroscopy/methods , Nitrogen Oxides/chemistry , Propofol/chemistry , Pyrimidinones/chemistry , Spin Labels , Surface Properties , Temperature , Time Factors , Viscosity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...