Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 210: 111958, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32707424

ABSTRACT

Cellular membrane is one of the main targets of photodynamic therapy. Its high complexity has led to the study of the efficiency of photosensitizers on artificial lipid systems mimicking membranes. However, the preliminary analysis of this efficiency remains limited due to difficulty of the model construction and/or implementation of the required measurement techniques. Hereby, we propose a quite simple way for the rapid comparative assessment of novel photosensitizers in terms of membrane photodegradation, based on simple and fast measurements, such as wetting angle and surface plasmon resonance spectroscopy. As a proof of concept, we applied this methodology to two bacteriopurpurinimide derivatives. We have shown in particular that such complementary techniques can be employed not only for the multiparametric monitoring of the kinetics of the photodegradation, but also for the comparison of the damaging efficiency of the photosensitizers in the lipid structures as well.


Subject(s)
Photosensitizing Agents/chemistry , Unilamellar Liposomes/chemistry , Infrared Rays , Microscopy, Atomic Force , Models, Molecular , Photolysis , Photosensitizing Agents/metabolism , Surface Plasmon Resonance , Unilamellar Liposomes/chemical synthesis , Water/chemistry
2.
IEEE Trans Nanobioscience ; 16(8): 650-655, 2017 12.
Article in English | MEDLINE | ID: mdl-28792903

ABSTRACT

Hybrid thin films based on Hydrocalumite (Ca2AlCl layered double hydroxide LDH) and tyrosinaseenzyme have been used for the elaboration of a high sensitive amperometric biosensor detecting polyphenols extracted from green tea. Structural properties of LDH nanomaterials were characterized by X-ray powder diffraction and Infra-Red spectroscopy, confirming its crystalline phase and chemical composition. Ca2AlCl-LDHs-thin films were deposited by spin-coating, and studied by atomic force microscopy to obtain information about the surface morphology of this host matrix before and after enzyme's immobilization. Electrochemical study using cyclic voltammetry and chronoamperometry shows good performances of the built-in biosensor with a high sensitivity for polyphenols concentrations ranging from 24 pM to and a limit of detection of 1.2 pM.


Subject(s)
Aluminum Oxide/chemistry , Biosensing Techniques/methods , Calcium Chloride/chemistry , Electrochemical Techniques/methods , Polyphenols/analysis , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Equipment Design , Microscopy, Atomic Force , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/metabolism , Nanostructures/chemistry
3.
Langmuir ; 32(2): 637-43, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26654539

ABSTRACT

Supramolecular structure of ultrathin films of hemicyanine dye bearing a crown ether group (CrHCR) was tuned by lateral pressure and investigated by means of compression isotherms, UV-vis and fluorescence spectroscopies, and X-ray reflectivity. Two different types of aggregation were revealed, depending on the absence or the presence of metal cations in the water subphase. While CrHCR forms at high surface pressures head-to-tail stacking aggregates on pure water, changing the subphase to a metal-cation-containing one leads to the appearance of well-defined excimers with head-to-head orientation. The structure of monolayers transferred onto solid supports by the Langmuir-Blodgett (LB) technique was examined by use of X-ray reflectivity measurements and molecular modeling. A model of cation-induced excimer formation in hemicyanine Langmuir monolayers is proposed. Finally, fluorescence emission properties of LB films of CrHCR can be managed by appropriate changes in the subphase composition, this last one determining the type of chromophore aggregation.


Subject(s)
Carbocyanines/chemistry , Crown Ethers/chemistry , Fluorescent Dyes/chemistry , Ionophores/chemistry , Surface-Active Agents/chemistry , Cations , Light , Models, Molecular , Photochemical Processes , Thermodynamics
4.
Biosens Bioelectron ; 57: 162-70, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24583687

ABSTRACT

This work deals with the design of a highly sensitive whole cell-based biosensor for heavy metal detection in liquid medium. The biosensor is constituted of a Love wave sensor coated with a polyelectrolyte multilayer (PEM). Escherichia coli bacteria are used as bioreceptors as their viscoelastic properties are influenced by toxic heavy metals. The acoustic sensor is constituted of a quartz substrate with interdigitated transducers and a SiO2 guiding layer. However, SiO2 shows some degradation when used in a saline medium. Mesoporous TiO2 presents good mechanical and chemical stability and offers a high active surface area. Then, the addition of a thin titania layer dip-coated onto the acoustic path of the sensor is proposed to overcome the silica degradation and to improve the mass effect sensitivity of the acoustic device. PEM and bacteria deposition, and heavy metal influence, are real time monitored through the resonance frequency variations of the acoustic device. The first polyelectrolyte layer is inserted through the titania mesoporosity, favouring rigid link of the PEM on the sensor and improving the device sensitivity. Also, the mesoporosity of surface increases the specific surface area which can be occupied and favors the formation of homogeneous PEM. It was found a frequency shift near -20±1 kHz for bacteria immobilization with titania film instead of -7±3 kHz with bare silica surface. The sensitivity is highlighted towards cadmium detection. Moreover, in this paper, particular attention is given to the immobilization of bacteria and to biosensor lifetime. Atomic Force Microscopy characterizations of the biosurface have been done for several weeks. They showed significant morphological differences depending on the bacterial life time. We noticed that the lifetime of the biosensor is longer in the case of using a mesoporous TiO2 layer.


Subject(s)
Acoustics/instrumentation , Biofilms , Biosensing Techniques/instrumentation , Escherichia/physiology , Metals, Heavy/analysis , Titanium/chemistry , Biofilms/growth & development , Cadmium/analysis , Equipment Design , Escherichia/cytology , Metals, Heavy/metabolism , Porosity , Sensitivity and Specificity , Transducers
5.
Chem Phys Lipids ; 113(1-2): 41-53, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11687226

ABSTRACT

Mixed monolayers of GM(1) glycolipid and stearoyl-oleoyl-phosphatidylcholine (SOPC) or dipalmitoyl-phosphatidycholine (DPPC) phospholipids were studied by surface pressure measurements. The effects induced by GM(1) on the mean molecular areas of mixtures and DPPC phase transition were followed for GM(1) concentrations ranging from 1 to 20 mol.%. Under our experimental conditions, one main parameter influencing the behavior of phospholipid-GM(1) monolayers is the ionic strength of the subphase. Mixed monolayers are in a more expanded state on buffer than on pure water. This could be due to a change of GM(1) orientation at the interface. The interaction of wheat germ agglutinin (WGA), a lectin recognizing specifically GM(1), with these monolayers was quantified in terms of the Gibbs equation. Specific WGA-GM(1) interactions are clearly reduced in the presence of DPPC as compared with SOPC, probably because of the higher packing density of these monolayers. Phospholipid-GM(1) monolayers could also undergo some rearrangements induced by WGA binding.


Subject(s)
G(M1) Ganglioside/metabolism , Phosphatidylcholines/chemistry , Wheat Germ Agglutinins/metabolism , Binding Sites , Dose-Response Relationship, Drug , G(M1) Ganglioside/chemistry , Humans , Surface Properties , Thermodynamics , Wheat Germ Agglutinins/chemistry
6.
Biochem Pharmacol ; 62(5): 561-7, 2001 Sep 01.
Article in English | MEDLINE | ID: mdl-11585053

ABSTRACT

Multidrug resistance phenotype in mammalian cells is often correlated with overexpression of P-glycoprotein (P-gp) or multidrug resistance-associated protein (MRP1). Both proteins are energy-dependent drug efflux pumps that efficiently reduce the intracellular accumulation and hence the cytotoxicity of many natural cytotoxins. Thus, both P-gp and MRP1 proteins are able to transport anthracycline but the role of chirality has not, up to now, been addressed. In this study, we compared the P-gp- and MRP1-mediated efflux of daunorubicin and its enantiomer WP900 in multidrug-resistant cells overexpressing either P-gp (K562/ADR cells) or MRP1 (GLC4/ADR cells). Using fluorescence techniques, we showed that in both cell lines the presence of the pump yielded a gradient of drug concentration: the intracellular free drug concentration in the cytosol was lower than the extracellular free drug concentration. Our data showed that the gradient of concentration generated by the pump was the same whether DNR or WP900 was used. This means that P-gp on the one hand and MRP1 on the other recognise WP900 as well as DNR and that the chirality of the molecule plays no role.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP-Binding Cassette Transporters/metabolism , Antibiotics, Antineoplastic/pharmacokinetics , Daunorubicin/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Biological Transport/physiology , Cytosol/metabolism , DNA/drug effects , DNA/metabolism , Daunorubicin/analogs & derivatives , Daunorubicin/chemistry , Drug Resistance/physiology , Humans , K562 Cells , Molecular Conformation , Multidrug Resistance-Associated Proteins , Tumor Cells, Cultured
7.
Biophys J ; 75(5): 2368-81, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9788932

ABSTRACT

The interaction of anthracyclines (daunorubicin and idarubicin) with monolayers of zwitterionic palmitoyloleoylphosphatidylcholine (POPC) and anionic dipalmitoylphosphatidic acid (POPC-DPPA 80-20 mol%) was studied by surface pressure measurements and compared with previous results obtained with other anthracyclines (pirarubicin and adriamycin). These anthracycline/phospholipid monolayers were next transferred by a Langmuir-Blodgett technique onto planar supports and studied by surface-enhanced resonance Raman scattering (SERRS), which gave information about the orientation of anthracycline in the monolayers. On the whole, the adsorption of anthracyclines in zwitterionic monolayers increases with the anthracycline hydrophobic/hydrophilic balance, which underlines the role of the hydrophobic component of the interaction. On the contrary, the anthracyclines remain adsorbed on the polar headgroups of the phospholipids in the presence of DPPA and form a screen that limits a deeper penetration of other anthracycline molecules. To study by SERRS measurements the crossing of pirarubicin through a phospholipid bilayer used as a membrane model, asymmetrical POPC-DPPA/POPC or POPC/POPC-DPPA bilayers were transferred by the Langmuir-Schäfer method, thanks to a laboratory-built set-up, and put in contact with a pirarubicin aqueous solution. It has been shown that the presence of anionic DPPA in the first monolayer in contact with pirarubicin would limit its crossing. This limiting effet is not observed if the first monolayer is zwitterionic.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Phospholipids/chemistry , Daunorubicin/chemistry , Doxorubicin/analogs & derivatives , Doxorubicin/chemistry , Idarubicin/chemistry , Lipid Bilayers/chemistry , Molecular Structure , Phosphatidic Acids/chemistry , Phosphatidylcholines/chemistry , Pressure , Scattering, Radiation , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...