Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroreport ; 15(7): 1171-5, 2004 May 19.
Article in English | MEDLINE | ID: mdl-15129168

ABSTRACT

In this study we have used a molecular approach to manipulate CREB gene expression to study its role in the regulation of neuronal cell death. To achieve this, adenoviral (Ad) vectors encoding EGFP, CREB, and a powerful CREB dominant-negative, known as A-CREB were constructed. The over-expression of CREB but not A-CREB was found to protect primary hippocampal neurons from staurosporine-induced apoptosis, glutamate induced excitotoxicity and exposure to an in vitro ischaemic stress. Hence, manipulating CREB-regulated pathways may provide a means of delaying or preventing the neuronal cell death associated with ischaemic related injury, and in neurodegenerative diseases such as Huntington's and Alzheimer's disease.


Subject(s)
Apoptosis/physiology , Cyclic AMP Response Element-Binding Protein/biosynthesis , Excitatory Amino Acid Agonists/pharmacology , Neurons/metabolism , Stress, Physiological/metabolism , Adenoviridae/genetics , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , HeLa Cells , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Neurons/drug effects , Rats , Rats, Wistar , Stress, Physiological/genetics
2.
Mol Ther ; 5(5 Pt 1): 509-16, 2002 May.
Article in English | MEDLINE | ID: mdl-11991741

ABSTRACT

Viral vectors are excellent tools for studying gene function in the brain, although a limitation has been the ability to effectively target transgene expression to specific neuronal populations. This generally cannot be overcome by the use of neuron-specific promoters, as most are too large to be used with current viral vectors and expression from these promoters is often relatively weak. We therefore developed a composite expression cassette, comprising 495 bp of the weak human SYN1 (synapsin-1) promoter and 800 bp of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Studies in hippocampal cultures, organotypic cultures, and in vivo showed that the 3' addition of the WPRE to the SYN1 element greatly increased enhanced green fluorescent protein expression levels with no loss of neuronal specificity. In vivo studies also showed that transgene expression was enhanced with no loss of neuronal specificity in dentate-gyrus neurons for at least 6 weeks following transfection. Therefore, unlike most powerful promoter systems, which mediate expression in neurons and glia, this SYN1-WPRE cassette can target powerful long-term transgene expression to central nervous system neurons when delivered at relatively low titers of adenovirus. Its use should therefore facilitate both gene therapy studies and investigations of neuronal gene function.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/administration & dosage , Hepatitis B Virus, Woodchuck/genetics , Hippocampus/metabolism , Luminescent Proteins/metabolism , Neurons/metabolism , Synapsins/genetics , Synapsins/metabolism , Animals , Cell Line , Flow Cytometry , Gene Expression Regulation, Viral , Gene Transfer Techniques , Genetic Vectors/genetics , Green Fluorescent Proteins , HeLa Cells , Humans , Immunoenzyme Techniques , Luminescent Proteins/genetics , Male , Promoter Regions, Genetic , RNA Processing, Post-Transcriptional , RNA, Viral/biosynthesis , RNA, Viral/genetics , Rats , Rats, Wistar , Regulatory Sequences, Nucleic Acid , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...