Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38826211

ABSTRACT

Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double-stranded breaks (DSBs) in vertebrates. However, due to challenges in detecting DSBs in living cells, the repair capacity of the NHEJ pathway is unknown. The DNA termini of many DSBs must be processed to allow ligation while minimizing genetic changes that result from break repair. Emerging models propose that DNA termini are first synapsed ~115Å apart in one of several long-range synaptic complexes before transitioning into a short-range synaptic complex that juxtaposes DNA ends to facilitate ligation. The transition from long-range to short-range synaptic complexes involves both conformational and compositional changes of the NHEJ factors bound to the DNA break. Importantly, it is unclear how NHEJ proceeds in vivo because of the challenges involved in analyzing recruitment of NHEJ factors to DSBs over time in living cells. Here, we develop a new approach to study the temporal and compositional dynamics of NHEJ complexes using live cell single-molecule imaging. Our results provide direct evidence for stepwise maturation of the NHEJ complex, pinpoint key regulatory steps in NHEJ progression, and define the overall repair capacity NHEJ in living cells.

2.
DNA Repair (Amst) ; 129: 103540, 2023 09.
Article in English | MEDLINE | ID: mdl-37467632

ABSTRACT

The genetic material in human cells is continuously exposed to a wide variety of insults that can induce different DNA lesions. To maintain genomic stability and prevent potentially deleterious genetic changes caused by DNA damage, mammalian cells have evolved a number of pathways that repair specific types of DNA damage. These DNA repair pathways vary in their accuracy, some providing high-fidelity repair while others are error-prone and are only activated as a last resort. Adding additional complexity to cellular mechanisms of DNA repair is the DNA damage response which is a sophisticated a signaling network that coordinates repair outcomes, cell-cycle checkpoint activation, and cell fate decisions. As a result of the sheer complexity of the various DNA repair pathways and the DNA damage response there are large gaps in our understanding of the molecular mechanisms underlying DNA damage repair in human cells. A key unaddressed question is how the dynamic recruitment of DNA repair factors contributes to repair kinetics and repair pathway choice in human cells. Methodological advances in live cell single-molecule imaging over the last decade now allow researchers to directly observe and analyze the dynamics of DNA repair proteins in living cells with high spatiotemporal resolution. Live cell single-molecule imaging combined with single-particle tracking can provide direct insight into the biochemical reactions that control DNA repair and has the power to identify previously unobservable processes in living cells. This review summarizes the main considerations for experimental design and execution for live cell single-molecule imaging experiments and describes how they can be used to define the molecular mechanisms of DNA damage repair in mammalian cells.


Subject(s)
DNA Repair , Single Molecule Imaging , Humans , DNA , DNA Damage , Signal Transduction
3.
Science ; 381(6658): 653-660, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37440612

ABSTRACT

Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are the primary pathways for repairing DNA double-strand breaks (DSBs) during interphase, whereas microhomology-mediated end-joining (MMEJ) has been regarded as a backup mechanism. Through CRISPR-Cas9-based synthetic lethal screens in cancer cells, we identified subunits of the 9-1-1 complex (RAD9A-RAD1-HUS1) and its interacting partner, RHINO, as crucial MMEJ factors. We uncovered an unexpected function for RHINO in restricting MMEJ to mitosis. RHINO accumulates in M phase, undergoes Polo-like kinase 1 (PLK1) phosphorylation, and interacts with polymerase θ (Polθ), enabling its recruitment to DSBs for subsequent repair. Additionally, we provide evidence that MMEJ activity in mitosis repairs persistent DSBs that originate in S phase. Our findings offer insights into the synthetic lethal relationship between the genes POLQ and BRCA1 and BRAC2 and the synergistic effect of Polθ and poly(ADP-ribose) polymerase (PARP) inhibitors.


Subject(s)
Cell Cycle Proteins , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Exonucleases , Mitosis , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Exonucleases/genetics , Exonucleases/metabolism , HEK293 Cells , Mitosis/genetics , Poly(ADP-ribose) Polymerases/metabolism
4.
Elife ; 122023 06 21.
Article in English | MEDLINE | ID: mdl-37341699

ABSTRACT

Repair of DNA double strand breaks (DSBs) is integral to preserving genomic integrity. Therefore, defining the mechanisms underlying DSB repair will enhance our understanding of how defects in these pathways contribute to human disease and could lead to the discovery of new approaches for therapeutic intervention. Here, we established a panel of HaloTagged DNA damage response factors in U2OS cells which enables concentration-dependent protein labeling by fluorescent HaloTag ligands. Genomic insertion of HaloTag at the endogenous loci of these repair factors preserves expression levels and proteins retain proper subcellular localization, foci-forming ability, and functionally support DSB repair. We systematically analyzed total cellular protein abundance, measured recruitment kinetics to laser-induced DNA damage sites, and defined the diffusion dynamics and chromatin binding characteristics by live-cell single-molecule imaging. Our work demonstrates that the Shieldin complex, a critical factor in end-joining, does not exist in a preassembled state and that relative accumulation of these factors at DSBs occurs with different kinetics. Additionally, live-cell single-molecule imaging revealed the constitutive interaction between MDC1 and chromatin mediated by its PST repeat domain. Altogether, our studies demonstrate the utility of single-molecule imaging to provide mechanistic insights into DNA repair, which will serve as a powerful resource for characterizing the biophysical properties of DNA repair factors in living cells.


Subject(s)
Chromatin , DNA Repair , Humans , Tumor Suppressor p53-Binding Protein 1/metabolism , DNA Breaks, Double-Stranded , DNA Damage
5.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993461

ABSTRACT

DNA double-strand breaks (DSBs) are toxic lesions that can lead to genome instability if not properly repaired. Breaks incurred in G1 phase of the cell cycle are predominantly fixed by non-homologous end-joining (NHEJ), while homologous recombination (HR) is the primary repair pathway in S and G2. Microhomology-mediated end-joining (MMEJ) is intrinsically error-prone and considered a backup DSB repair pathway that becomes essential when HR and NHEJ are compromised. In this study, we uncover MMEJ as the major DSB repair pathway in M phase. Using CRISPR/Cas9-based synthetic lethal screens, we identify subunits of the 9-1-1 complex (RAD9A-HUS1-RAD1) and its interacting partner, RHINO, as critical MMEJ factors. Mechanistically, we show that the function of 9-1-1 and RHINO in MMEJ is inconsistent with their well-established role in ATR signaling. Instead, RHINO plays an unexpected and essential role in directing mutagenic repair to M phase by directly binding to Polymerase theta (Polθ) and promoting its recruitment to DSBs in mitosis. In addition, we provide evidence that mitotic MMEJ repairs persistent DNA damage that originates in S phase but is not repaired by HR. The latter findings could explain the synthetic lethal relationship between POLQ and BRCA1/2 and the synergistic effect of Polθ and PARP inhibitors. In summary, our study identifies MMEJ as the primary pathway for repairing DSBs during mitosis and highlights an unanticipated role for RHINO in directing mutagenic repair to M phase.

6.
NAR Cancer ; 5(1): zcac045, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36644397

ABSTRACT

ERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers.

7.
Front Oncol ; 12: 826655, 2022.
Article in English | MEDLINE | ID: mdl-35251993

ABSTRACT

Replication protein A (RPA) plays essential roles in DNA replication, repair, recombination, and the DNA damage response (DDR). Retrospective analysis of lung cancer patient data demonstrates high RPA expression as a negative prognostic biomarker for overall survival in smoking-related lung cancers. Similarly, relative expression of RPA is a predictive marker for response to chemotherapy. These observations are consistent with the increase in RPA expression serving as an adaptive mechanism that allows tolerance of the genotoxic stress resulting from carcinogen exposure. We have developed second-generation RPA inhibitors (RPAis) that block the RPA-DNA interaction and optimized formulation for in vivo analyses. Data demonstrate that unlike first-generation RPAis, second-generation molecules show increased cellular permeability and induce cell death via apoptosis. Second-generation RPAis elicit single-agent in vitro anticancer activity across a broad spectrum of cancers, and the cellular response suggests existence of a threshold before chemical RPA exhaustion induces cell death. Chemical RPA inhibition potentiates the anticancer activity of a series of DDR inhibitors and traditional DNA-damaging cancer therapeutics. Consistent with chemical RPA exhaustion, we demonstrate that the effects of RPAi on replication fork dynamics are similar to other known DDR inhibitors. An optimized formulation of RPAi NERx 329 was developed that resulted in single-agent anticancer activity in two non-small cell lung cancer models. These data demonstrate a unique mechanism of action of RPAis eliciting a state of chemical RPA exhaustion and suggest they will provide an effective therapeutic option for difficult-to-treat lung cancers.

8.
Cell Death Dis ; 11(5): 328, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32382008

ABSTRACT

Ubiquitin-specific peptidase 10 (USP10) stabilizes both tumor suppressors and oncogenes in a context-dependent manner. However, the nature of USP10's role in non-small cell lung cancer (NSCLC) remains unclear. By analyzing The Cancer Genome Atlas (TCGA) database, we have shown that high levels of USP10 are associated with poor overall survival in NSCLC with mutant p53, but not with wild-type p53. Consistently, genetic depletion or pharmacological inhibition of USP10 dramatically reduces the growth of lung cancer xenografts lacking wild-type p53 and sensitizes them to cisplatin. Mechanistically, USP10 interacts with, deubiquitinates, and stabilizes oncogenic protein histone deacetylase 6 (HDAC6). Furthermore, reintroducing either USP10 or HDAC6 into a USP10-knockdown NSCLC H1299 cell line with null-p53 renders cisplatin resistance. This result suggests the existence of a "USP10-HDAC6-cisplatin resistance" axis. Clinically, we have found a positive correlation between USP10 and HDAC6 expression in a cohort of NSCLC patient samples. Moreover, we have shown that high levels of USP10 mRNA correlate with poor overall survival in a cohort of advanced NSCLC patients who received platinum-based chemotherapy. Overall, our studies suggest that USP10 could be a potential biomarker for predicting patient response to platinum, and that targeting USP10 could sensitize lung cancer patients lacking wild-type p53 to platinum-based therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Histone Deacetylase 6/metabolism , Lung Neoplasms/drug therapy , Tumor Suppressor Protein p53/deficiency , Ubiquitin Thiolesterase/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, SCID , Mutation/genetics , Ovarian Neoplasms/pathology , Platinum/pharmacology , Protein Binding/drug effects , Protein Stability/drug effects , Signal Transduction/drug effects , Substrate Specificity/drug effects , Tumor Suppressor Protein p53/metabolism , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
9.
Molecules ; 25(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344513

ABSTRACT

Platinum-based chemotherapy remains a mainstay treatment for the management of advanced non-small cell lung cancer. A key cellular factor that contributes to sensitivity to platinums is the 5'-3' structure-specific endonuclease excision repair cross-complementation group 1 (ERCC1)/ xeroderma pigmentosum group F (XPF). ERCC1/XPF is critical for the repair of platinum-induced DNA damage and has been the subject of intense research efforts to identify small molecule inhibitors of its nuclease activity for the purpose of enhancing patient response to platinum-based chemotherapy. As an alternative to small molecule inhibitors, small interfering RNA (siRNA) has often been described to be more efficient in interrupting protein-protein interactions. The goal of this study was therefore to determine whether biocompatible nanoparticles consisting of an amphiphilic triblock copolymer (polyethylenimine-polycaprolactone-polyethylene glycol (PEI-PCL-PEG)) and carrying siRNA targeted to ERCC1 and XPF made by microfluidic assembly are capable of efficient gene silencing and able to sensitize lung cancer cells to cisplatin. First, we show that our PEI-PCL-PEG micelleplexes carrying ERCC1 and XPF siRNA efficiently knocked down ERCC1/XPF protein expression to the same extent as the standard siRNA transfection reagent, Lipofectamine. Second, we show that our siRNA-carrying nanoparticles enhanced platinum sensitivity in a p53 wildtype model of non-small cell lung cancer in vitro. Our results suggest that nanoparticle-mediated targeting of ERCC1/XPF is feasible and could represent a novel therapeutic strategy for targeting ERCC1/XPF in vivo.


Subject(s)
Antineoplastic Agents/administration & dosage , Cisplatin/administration & dosage , Drug Resistance, Neoplasm/drug effects , Gene Silencing/drug effects , Nanoparticles , Cell Line, Tumor , DNA-Binding Proteins/genetics , Dose-Response Relationship, Drug , Endonucleases/genetics , Gene Knockdown Techniques , Humans , Nanoparticles/chemistry , RNA Interference , RNA, Small Interfering/genetics
10.
Clin Cancer Res ; 25(8): 2523-2536, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30538112

ABSTRACT

PURPOSE: ERCC1/XPF is a DNA endonuclease with variable expression in primary tumor specimens, and has been investigated as a predictive biomarker for efficacy of platinum-based chemotherapy. The failure of clinical trials utilizing ERCC1 expression to predict response to platinum-based chemotherapy suggests additional mechanisms underlying the basic biology of ERCC1 in the response to interstrand crosslinks (ICLs) remain unknown. We aimed to characterize a panel of ERCC1 knockout (Δ) cell lines, where we identified a synthetic viable phenotype in response to ICLs with ERCC1 deficiency. EXPERIMENTAL DESIGN: We utilized the CRISPR-Cas9 system to create a panel of ERCC1Δ lung cancer cell lines which we characterized. RESULTS: We observe that loss of ERCC1 hypersensitizes cells to cisplatin when wild-type (WT) p53 is retained, whereas there is only modest sensitivity in cell lines that are p53mutant/null. In addition, when p53 is disrupted by CRISPR-Cas9 (p53*) in ERCC1Δ/p53WT cells, there is reduced apoptosis and increased viability after platinum treatment. These results were recapitulated in 2 patient data sets utilizing p53 mutation analysis and ERCC1 expression to assess overall survival. We also show that kinetics of ICL-repair (ICL-R) differ between ERCC1Δ/p53WT and ERCC1Δ/p53* cells. Finally, we provide evidence that cisplatin tolerance in the context of ERCC1 deficiency relies on DNA-PKcs and BRCA1 function. CONCLUSIONS: Our findings implicate p53 as a potential confounding variable in clinical assessments of ERCC1 as a platinum biomarker via promoting an environment in which error-prone mechanisms of ICL-R may be able to partially compensate for loss of ERCC1.See related commentary by Friboulet et al., p. 2369.


Subject(s)
DNA-Binding Proteins/deficiency , Lung Neoplasms , Cisplatin , DNA Repair , Endonucleases/deficiency , Humans
11.
Nutrients ; 10(11)2018 Nov 03.
Article in English | MEDLINE | ID: mdl-30400270

ABSTRACT

The 5'-3' structure-specific endonuclease ERCC1/XPF (Excision Repair Cross-Complementation Group 1/Xeroderma Pigmentosum group F) plays critical roles in the repair of cisplatin-induced DNA damage. As such, it has been identified as a potential pharmacological target for enhancing clinical response to platinum-based chemotherapy. The goal of this study was to follow up on our previous identification of the compound NSC143099 as a potent inhibitor of ERCC1/XPF activity by performing an in silico screen to identify structural analogues that could inhibit ERCC1/XPF activity in vitro and in vivo. Using a fluorescence-based DNA-endonuclease incision assay, we identified the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) as a potent inhibitor of ERCC1/XPF activity with an IC50 (half maximal inhibitory concentration) in the nanomolar range in biochemical assays. Using DNA repair assays and clonogenic survival assays, we show that EGCG can inhibit DNA repair and enhance cisplatin sensitivity in human cancer cells. Finally, we show that a prodrug of EGCG, Pro-EGCG (EGCG octaacetate), can enhance response to platinum-based chemotherapy in vivo. Together these data support a novel target of EGCG in cancer cells, namely ERCC1/XPF. Our studies also corroborate previous observations that EGCG enhances sensitivity to cisplatin in multiple cancer types. Thus, EGCG or its prodrug makes an ideal candidate for further pharmacological development with the goal of enhancing cisplatin response in human tumors.


Subject(s)
Catechin/analogs & derivatives , Cisplatin/pharmacology , DNA Repair/drug effects , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Polyphenols/pharmacology , Animals , Apoptosis/drug effects , Catechin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Comet Assay , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm , Endonucleases/genetics , Female , Humans , Mice , Mice, Nude , Platinum/pharmacology , Prodrugs/pharmacology , Tea/chemistry
12.
Cancers (Basel) ; 10(10)2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30279363

ABSTRACT

The radiation-induced bystander effect (RIBE) can increase cellular toxicity in a gap junction dependent manner in unirradiated bystander cells. Recent reports have suggested that cisplatin toxicity can also be mediated by functional gap junction intercellular communication (GJIC). In this study using lung and ovarian cancer cell lines, we showed that cisplatin cytotoxicity is mediated by cellular density. This effect is ablated when GJA1 or Connexin 43 (Cx43) is targeted, a gap junction gene and protein, respectively, leading to cisplatin resistance but only at high or gap junction forming density. We also observed that the cisplatin-mediated bystander effect was elicited as DNA Double Strand Breaks (DSBs) with positive H2AX Ser139 phosphorylation (γH2AX) formation, an indicator of DNA DSBs. These DSBs are not observed when gap junction formation is prevented. We next showed that cisplatin is not the "death" signal traversing the gap junctions by utilizing the cisplatin-GG intrastrand adduct specific antibody. Finally, we also showed that cells deficient in the structure-specific DNA endonuclease ERCC1-ERCC4 (ERCC1-XPF), an important mediator of cisplatin resistance, further sensitized when treated with cisplatin in the presence of gap junction forming density. Taken together, these results demonstrate the positive effect of GJIC on increasing cisplatin cytotoxicity.

13.
Oncotarget ; 7(46): 75104-75117, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27650543

ABSTRACT

ERCC1-XPF heterodimer is a 5'-3' structure-specific endonuclease which is essential in multiple DNA repair pathways in mammalian cells. ERCC1-XPF (ERCC1-ERCC4) repairs cisplatin-DNA intrastrand adducts and interstrand crosslinks and its specific inhibition has been shown to enhance cisplatin cytotoxicity in cancer cells. In this study, we describe a high throughput screen (HTS) used to identify small molecules that inhibit the endonuclease activity of ERCC1-XPF. Primary screens identified two compounds that inhibit ERCC1-XPF activity in the nanomolar range. These compounds were validated in secondary screens against two other non-related endonucleases to ensure specificity. Results from these screens were validated using an in vitro gel-based nuclease assay. Electrophoretic mobility shift assays (EMSAs) further show that these compounds do not inhibit the binding of purified ERCC1-XPF to DNA. Next, in lung cancer cells these compounds potentiated cisplatin cytotoxicity and inhibited DNA repair. Structure activity relationship (SAR) studies identified related compounds for one of the original Hits, which also potentiated cisplatin cytotoxicity in cancer cells. Excitingly, dosing with NSC16168 compound potentiated cisplatin antitumor activity in a lung cancer xenograft model. Further development of ERCC1-XPF DNA repair inhibitors is expected to sensitize cancer cells to DNA damage-based chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , DNA Repair/drug effects , DNA-Binding Proteins/antagonists & inhibitors , Endonucleases/antagonists & inhibitors , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Screening Assays, Antitumor , Drug Synergism , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Mice , Xenograft Model Antitumor Assays
14.
Biochimie ; 122: 68-76, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26375517

ABSTRACT

Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the clinical importance of proteases in cancer progression, their functional roles individually and within the context of complex protease networks have not yet been well defined. These gaps in our understanding might be addressed with: 1) accurate and sensitive tools and methods to directly identify changes in protease activities in live cells, and 2) pathomimetic avatars for cancer that recapitulate in vitro the tumor in the context of its cellular and non-cellular microenvironment. Such avatars should be designed to facilitate mechanistic studies that can be translated to animal models and ultimately the clinic. Here, we will describe basic principles and recent applications of live-cell imaging for identification of active proteases. The avatars optimized by our laboratory are three-dimensional (3D) human breast cancer models in a matrix of reconstituted basement membrane (rBM). They are designated mammary architecture and microenvironment engineering (MAME) models as they have been designed to mimic the structural and functional interactions among cell types in the normal and cancerous human breast. We have demonstrated the usefulness of these pathomimetic avatars for following dynamic and temporal changes in cell:cell interactions and quantifying changes in protease activity associated with these interactions in real-time (4D). We also briefly describe adaptation of the avatars to custom-designed and fabricated tissue architecture and microenvironment engineering (TAME) chambers that enhance our ability to analyze concomitant changes in the malignant phenotype and the associated tumor microenvironment.


Subject(s)
Diagnostic Imaging/methods , Neoplasms/enzymology , Peptide Hydrolases/metabolism , Tumor Microenvironment , Animals , Diagnostic Imaging/instrumentation , Humans , Kinetics , Neoplasms/diagnosis , Reproducibility of Results , Sensitivity and Specificity , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...