Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 23(1): 507, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443666

ABSTRACT

Bacteria can exceptionally evolve and develop pathogenic features making it crucial to determine novel pathogenic proteins for specific therapeutic interventions. Therefore, we have developed a machine-learning tool that predicts and functionally classifies pathogenic proteins into their respective pathogenic classes. Through construction of pathogenic proteins database and optimization of ML algorithms, Support Vector Machine was selected for the model construction. The developed SVM classifier yielded an accuracy of 81.72% on the blind-dataset and classified the proteins into three classes: Non-pathogenic proteins (Class-1), Antibiotic Resistance Proteins and Toxins (Class-2), and Secretory System Associated and capsular proteins (Class-3). The classifier provided an accuracy of 79% on real dataset-1, and 72% on real dataset-2. Based on the probability of prediction, users can estimate the pathogenicity and annotation of proteins under scrutiny. Tool will provide accurate prediction of pathogenic proteins in genomic and metagenomic datasets providing leads for experimental validations. Tool is available at: http://metagenomics.iiserb.ac.in/mp4 .


Subject(s)
Metagenome , Metagenomics , Genomics , Machine Learning , Databases, Protein
2.
Genomics ; 112(4): 2823-2832, 2020 07.
Article in English | MEDLINE | ID: mdl-32229287

ABSTRACT

Identification of biofilm inhibitory small molecules appears promising for therapeutic intervention against biofilm-forming bacteria. However, the experimental identification of such molecules is a time-consuming task, and thus, the computational approaches emerge as promising alternatives. We developed the 'Molib' tool to predict the biofilm inhibitory activity of small molecules. We curated a training dataset of biofilm inhibitory molecules, and the structural and chemical features were used for feature selection, followed by algorithms optimization and building of machine learning-based classification models. On five-fold cross validation, Random Forest-based descriptor, fingerprint and hybrid classification models showed accuracies of 0.93, 0.88 and 0.90, respectively. The performances of all models were evaluated on two different validation datasets including biofilm inhibitory and non-inhibitory molecules, attesting to its accuracy (≥ 0.90). The Molib web server would serve as a highly useful and reliable tool for the prediction of biofilm inhibitory activity of small molecules.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Machine Learning , Software , Anti-Bacterial Agents/pharmacology , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...