Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 91(2): 521-547, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26997338

ABSTRACT

A thorough understanding of which of the effects assessed in the in vivo Draize eye test are responsible for driving UN GHS/EU CLP classification is critical for an adequate selection of chemicals to be used in the development and/or evaluation of alternative methods/strategies and for properly assessing their predictive capacity and limitations. For this reason, Cosmetics Europe has compiled a database of Draize data (Draize eye test Reference Database, DRD) from external lists that were created to support past validation activities. This database contains 681 independent in vivo studies on 634 individual chemicals representing a wide range of chemical classes. A description of all the ocular effects observed in vivo, i.e. degree of severity and persistence of corneal opacity (CO), iritis, and/or conjunctiva effects, was added for each individual study in the database, and the studies were categorised according to their UN GHS/EU CLP classification and the main effect driving the classification. An evaluation of the various in vivo drivers of classification compiled in the database was performed to establish which of these are most important from a regulatory point of view. These analyses established that the most important drivers for Cat 1 Classification are (1) CO mean ≥ 3 (days 1-3) (severity) and (2) CO persistence on day 21 in the absence of severity, and those for Cat 2 classification are (3) CO mean ≥ 1 and (4) conjunctival redness mean ≥ 2. Moreover, it is shown that all classifiable effects (including persistence and CO = 4) should be present in ≥60 % of the animals to drive a classification. As a consequence, our analyses suggest the need for a critical revision of the UN GHS/EU CLP decision criteria for the Cat 1 classification of chemicals. Finally, a number of key criteria are identified that should be taken into consideration when selecting reference chemicals for the development, evaluation and/or validation of alternative methods and/or strategies for serious eye damage/eye irritation testing. Most important, the DRD is an invaluable tool for any future activity involving the selection of reference chemicals.


Subject(s)
Cosmetics/adverse effects , Cosmetics/classification , Drug Evaluation, Preclinical/methods , Eye/drug effects , Toxicity Tests/methods , Animals , Cosmetics/toxicity , Databases, Factual , Europe , Humans , Irritants/classification , Irritants/toxicity , Rabbits , Reproducibility of Results
2.
Toxicol In Vitro ; 29(1): 259-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25448812

ABSTRACT

The need for non-animal data to assess skin sensitisation properties of substances, especially cosmetics ingredients, has spawned the development of many in vitro methods. As it is widely believed that no single method can provide a solution, the Cosmetics Europe Skin Tolerance Task Force has defined a three-phase framework for the development of a non-animal testing strategy for skin sensitization potency prediction. The results of the first phase ­ systematic evaluation of 16 test methods ­ are presented here. This evaluation involved generation of data on a common set of ten substances in all methods and systematic collation of information including the level of standardisation, existing test data,potential for throughput, transferability and accessibility in cooperation with the test method developers.A workshop was held with the test method developers to review the outcome of this evaluation and to discuss the results. The evaluation informed the prioritisation of test methods for the next phase of the non-animal testing strategy development framework. Ultimately, the testing strategy ­ combined with bioavailability and skin metabolism data and exposure consideration ­ is envisaged to allow establishment of a data integration approach for skin sensitisation safety assessment of cosmetic ingredients.


Subject(s)
Animal Testing Alternatives/methods , Dermatitis, Allergic Contact/etiology , Cell Line , Cosmetics , Epidermis/drug effects , Humans , In Vitro Techniques , Interleukin-18/analysis , Keratinocytes/drug effects , Risk Assessment , Skin/drug effects , U937 Cells/drug effects
3.
Dermatitis ; 25(1): 11-21, 2014.
Article in English | MEDLINE | ID: mdl-24407057

ABSTRACT

Although adoption of skin sensitization in vivo assays for hazard identification is likely to be successful in the next few years, this does not replace their use in potency prediction. Notably, measurement of potency of skin sensitizers in the local lymph node assay has been important. However, this local lymph node assay potency measure has not been formally assessed against a range of substances of known human sensitizing potential, because the latter is lacking. Accordingly, criteria for human data have been established that characterize 6 categories of human sensitizing potency, with 1 the most potent and 5 the least potent; category 6 represents true nonsensitizers. The literature has been searched, and 131 chemicals assigned into these categories according to their intrinsic potency judged only by the available human information. The criteria and data set generated provide a basis for examination of the capacity of nonanimal approaches for the determination of human sensitization potency.


Subject(s)
Allergens/classification , Allergens/toxicity , Dermatitis, Allergic Contact/etiology , Dose-Response Relationship, Immunologic , Humans , Local Lymph Node Assay , No-Observed-Adverse-Effect Level , Patch Tests
4.
Regul Toxicol Pharmacol ; 63(1): 40-52, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22374415

ABSTRACT

Characterisation of skin sensitisation potential is a key endpoint for the safety assessment of cosmetic ingredients especially when significant dermal exposure to an ingredient is expected. At present the mouse local lymph node assay (LLNA) remains the 'gold standard' test method for this purpose however non-animal test methods are under development that aim to replace the need for new animal test data. COLIPA (the European Cosmetics Association) funds an extensive programme of skin sensitisation research, method development and method evaluation and helped coordinate the early evaluation of the three test methods currently undergoing pre-validation. In May 2010, a COLIPA scientific meeting was held to analyse to what extent skin sensitisation safety assessments for cosmetic ingredients can be made in the absence of animal data. In order to propose guiding principles for the application and further development of non-animal safety assessment strategies it was evaluated how and when non-animal test methods, predictions based on physico-chemical properties (including in silico tools), threshold concepts and weight-of-evidence based hazard characterisation could be used to enable safety decisions. Generation and assessment of potency information from alternative tools which at present is predominantly derived from the LLNA is considered the future key research area.


Subject(s)
Allergens/toxicity , Animal Testing Alternatives , Consumer Product Safety , Cosmetics/toxicity , Hypersensitivity/etiology , Skin/drug effects , Risk Assessment/methods , Skin/immunology
5.
Regul Toxicol Pharmacol ; 57(2-3): 315-24, 2010.
Article in English | MEDLINE | ID: mdl-20382194

ABSTRACT

For the assessment of genotoxic effects of cosmetic ingredients, a number of well-established and regulatory accepted in vitro assays are in place. A caveat to the use of these assays is their relatively low specificity and high rate of false or misleading positive results. Due to the 7th amendment to the EU Cosmetics Directive ban on in vivo genotoxicity testing for cosmetics that was enacted March 2009, it is no longer possible to conduct follow-up in vivo genotoxicity tests for cosmetic ingredients positive in in vitro genotoxicity tests to further assess the relevance of the in vitro findings. COLIPA, the European Cosmetics Association, has initiated a research programme to improve existing and develop new in vitro methods. A COLIPA workshop was held in Brussels in April 2008 to analyse the best possible use of available methods and approaches to enable a sound assessment of the genotoxic hazard of cosmetic ingredients. Common approaches of cosmetic companies are described, with recommendations for evaluating in vitro genotoxins using non-animal approaches. A weight of evidence approach was employed to set up a decision-tree for the integration of alternative methods into tiered testing strategies.


Subject(s)
Animal Testing Alternatives/methods , Consumer Product Safety , Cosmetics/toxicity , Mutagens/toxicity , Animals , Cosmetics/standards , Europe , Humans , Mutagenicity Tests/methods , Mutagenicity Tests/standards , Research Design , Sensitivity and Specificity
6.
Regul Toxicol Pharmacol ; 54(2): 188-96, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19393278

ABSTRACT

Evaluation of the skin irritancy and corrosivity potential of an ingredient is a necessity in the safety assessment of cosmetic ingredients. To date, there are two formally validated alternatives to the rabbit Draize test for skin corrosivity in place, namely the rat skin transcutaneous electrical resistance (TER) assay and the Human Skin Model Test using EpiSkin, EpiDerm and SkinEthic reconstructed human epidermal equivalents. For skin irritation, EpiSkin, EpiDerm and SkinEthic are validated as stand-alone test replacements for the rabbit Draize test. Data from these tests are rarely considered in isolation and are evaluated in combination with other factors to establish the overall irritating or corrosive potential of an ingredient. In light of the deadlines established in the Cosmetics Directive for cessation of animal testing for cosmetic ingredients, a COLIPA scientific meeting was held in Brussels on 30th January, 2008 to review the use of alternative approaches and to set up a decision tree approach for their integration into tiered testing strategies for hazard and safety assessment of cosmetic ingredients and their use in products. In conclusion, the safety assessments for skin irritation/corrosion of new chemicals for use in cosmetics can be confidently accomplished using exclusively alternative methods.


Subject(s)
Animal Testing Alternatives/methods , Consumer Product Safety , Cosmetics/adverse effects , Skin Irritancy Tests/methods , Skin/drug effects , Animals , Congresses as Topic , Cosmetics/standards , Decision Trees , Humans
7.
Regul Toxicol Pharmacol ; 54(2): 197-209, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19393279

ABSTRACT

The need for alternative approaches to replace the in vivo rabbit Draize eye test for evaluation of eye irritation of cosmetic ingredients has been recognised by the cosmetics industry for many years. Extensive research has lead to the development of several assays, some of which have undergone formal validation. Even though, to date, no single in vitro assay has been validated as a full replacement for the rabbit Draize eye test, organotypic assays are accepted for specific and limited regulatory purposes. Although not formally validated, several other in vitro models have been used for over a decade by the cosmetics industry as valuable tools in a weight of evidence approach for the safety assessment of ingredients and finished products. In light of the deadlines established in the EU Cosmetics Directive for cessation of animal testing for cosmetic ingredients, a COLIPA scientific meeting was held in Brussels on 30th January, 2008 to review the use of alternative approaches and to set up a decision-tree approach for their integration into tiered testing strategies for hazard and safety assessment of cosmetic ingredients and their use in products. Furthermore, recommendations are given on how remaining data gaps and research needs can be addressed.


Subject(s)
Animal Testing Alternatives/methods , Consumer Product Safety , Cosmetics/adverse effects , Eye/drug effects , Irritants/adverse effects , Animals , Congresses as Topic , Cosmetics/standards , Decision Trees , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...