Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(15): 10666-10678, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573868

ABSTRACT

Brønsted acidic zeolites are ubiquitous catalysts in fuel and chemical production. Broadening the catalytic diversity of a given zeolite requires strategies to manipulate the acid site placement at framework positions within distinct microporous locations. Here, we combine experiment and theory to elucidate how intermolecular interactions between organic structure-directing agents (OSDAs) and framework Al centers influence the placement of H+ sites in distinct void environments of MFI zeolites and demonstrate the catalytic consequences of active site location on kinetically controlled (403 K) toluene methylation to xylene regioisomers. Kinetic measurements, interpreted using mechanism-derived rate expressions and transition state theory, alongside density functional theory (DFT) calculations show that larger intersection environments similarly stabilize all three xylene isomer transition states without altering well-established aromatic substitution patterns (ortho/para/meta ∼ 60%:30%:10%), while smaller channel environments preferentially destabilize transition states that form bulkier ortho- and meta-isomers, thereby resulting in high intrinsic para-xylene selectivity (∼80%). DFT calculations reveal that the flexibility of nonconventional OSDAs (e.g., 1,4-diazabicyclo[2.2.2]octane) to reorient within MFI intersections and their ability to hydrogen-bond to form protonated complexes favor the placement of Al in smaller channel environments compared to conventional quaternary OSDAs (e.g., tetra-n-propylammonium). These molecular-level insights establish a mechanistic link between OSDA structure, active site placement, and transition state stability in MFI zeolites and provide active site design strategies that are orthogonal to crystallite design approaches harnessing complex reaction-diffusion phenomena to enhance regioisomer selectivity in the industrial production of valuable polymer precursors.

2.
ACS Mater Au ; 2(2): 163-175, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-36855771

ABSTRACT

Control of the spatial proximity of Brønsted acid sites within the zeolite framework can result in materials with properties that are distinct from materials synthesized through conventional crystallization methods or available from commercial sources. Recent experimental evidence has shown that turnover rates of different acid-catalyzed reactions increase with the fraction of proximal sites in chabazite (CHA) zeolites. The catalytic conversion of oxygenates is an important research area, and the dehydration of methanol to dimethyl ether (DME) is a well-studied reaction as part of methanol-to-olefin chemistry catalyzed by solid acids. Published experimental data have shown that DME formation rates (per acid site) increase systematically with the fraction of proximal acid sites in the six-membered ring of CHA. Here, we probe the effect of acid site proximity in CHA on methanol dehydration rates using electronic structure calculations and microkinetic modeling to identify the primary causes of this chemistry and their relationship to the local structure of the catalyst at the nanoscale. We report a density functional theory-parametrized microkinetic model of methanol dehydration to DME, catalyzed by acidic CHA zeolite with direct comparison to experimental data. Effects of proximal acid sites on reaction rates were captured quantitatively for a range of operating conditions and catalyst compositions, with a focus on total paired acid site concentration and reactant clustering to form higher nuclearity complexes. Next-nearest neighbor paired acid sites were identified as promoting the formation of methanol trimer clusters rather than the inhibiting tetramer or pentamer clusters, resulting in large increases in the rate for DME production due to the lower energy barriers present in the concerted methanol trimer reaction pathway. The model framework developed in this study can be extended to other zeolite materials and reaction chemistries toward the goal of rational design and development of next-generation catalytic materials and chemical processes.

3.
Angew Chem Int Ed Engl ; 59(42): 18686-18694, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32659034

ABSTRACT

Zeolite reactivity depends on the solvating environments of their micropores and the proximity of their Brønsted acid sites. Turnover rates (per H+ ) for methanol and ethanol dehydration increase with the fraction of H+ sites sharing six-membered rings of chabazite (CHA) zeolites. Density functional theory (DFT) shows that activation barriers vary widely with the number and arrangement of Al (1-5 per 36 T-site unit cell), but cannot be described solely by Al-Al distance or density. Certain Al distributions yield rigid arrangements of anionic charge that stabilize cationic intermediates and transition states via H-bonding to decrease barriers. This is a key feature of acid catalysis in zeolite solvents, which lack the isotropy of liquid solvents. The sensitivity of polar transition states to specific arrangements of charge in their solvating environments and the ability to position such charges in zeolite lattices with increasing precision herald rich catalytic diversity among zeolites of varying Al arrangement.

4.
J Am Chem Soc ; 141(42): 16671-16684, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31557006

ABSTRACT

Identifying individual reactive intermediates within the "zoo" of organometallic species that form on catalytic surfaces during reactions is a long-standing challenge in heterogeneous catalysis. Here, we identify distinct reactive intermediates, all of which exist at low coverages, that lead to distinguishable reaction pathways during the hydrogenolysis of 2-methyltetrahydrofuran (MTHF) on Ni, Ni12P5, and Ni2P catalysts by combining advanced spectroscopic methods with quantum chemical calculations. Each of these reactive complexes cleaves specific C-O bonds, gives rise to unique products, and exhibits different apparent activation barriers for ring opening. The spectral features of the reactive intermediates are extracted by collecting in situ infrared spectra while sinusoidally modulating the H2 pressure during MTHF hydrogenolysis and applying phase-sensitive detection (PSD), which suppresses the features of inactive surface species. The combined spectra of all reactive species are deconvoluted using singular-value decomposition techniques that yield spectra and changes in surface coverage for each set of kinetically differentiable species. These deconvoluted spectra are consistent with predicted spectral features for the reactive surface intermediates implicated by detailed kinetic measurements and DFT calculations. Notably, these methods give direct evidence for several anticipated differences in the coordination and composition of reactive MTHF-derived species. The compositions of the most abundant reactive intermediate (MARI) on Ni, Ni12P5, and Ni2P nanoparticles during the C-O bond rupture of MTHF are identical; however, MARI changes orientation from Ni3(µ3-C5H10O) to Ni3(η5-C5H10O) (i.e., lies more parallel with the catalyst surface) with increasing phosphorus content. The shift in binding configuration with phosphorus content suggests that the decrease in steric hindrance to rupture the 3C-O bond is the fundamental cause of increased selectivity toward 3C-O bond rupture. Previous kinetic measurements and DFT calculations indicate that C-O bond rupture occurs on Ni ensembles on Ni, Ni12P5, and Ni2P catalysts; however, the addition of more electronegative phosphorus atoms that withdraw a small charge from Ni ensembles results in differences in the binding configuration, activation enthalpy, and selectivity. The results from this in situ spectroscopic methodology support previous proposals that the manipulation of the electronic structure of metal ensembles by the introduction of phosphorus provides strategies for designing catalysts for the selective cleavage of hindered C-X bonds and demonstrate the utility of this approach in identifying individual reactive species within the zoo.

5.
J Am Chem Soc ; 140(43): 14244-14266, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30265002

ABSTRACT

Lewis acid sites in zeolites catalyze aqueous-phase sugar isomerization at higher turnover rates when confined within hydrophobic rather than within hydrophilic micropores; however, relative contributions of competitive water adsorption at active sites and preferential stabilization of isomerization transition states have remained unclear. Here, we employ a suite of experimental and theoretical techniques to elucidate the effects of coadsorbed water on glucose isomerization reaction coordinate free energy landscapes. Transmission IR spectra provide evidence that water forms extended hydrogen-bonding networks within hydrophilic but not hydrophobic micropores of Beta zeolites. Aqueous-phase glucose isomerization turnover rates measured on Ti-Beta zeolites transition from first-order to zero-order dependence on glucose thermodynamic activity, as Lewis acidic Ti sites transition from water-covered to glucose-covered, consistent with intermediates identified from modulation excitation spectroscopy during in situ attenuated total reflectance IR experiments. First-order and zero-order isomerization rate constants are systematically higher (by 3-12×, 368-383 K) when Ti sites are confined within hydrophobic micropores. Apparent activation enthalpies and entropies reveal that glucose and water competitive adsorption at Ti sites depend weakly on confining environment polarity, while Gibbs free energies of hydride-shift isomerization transition states are lower when confined within hydrophobic micropores. DFT calculations suggest that interactions between intraporous water and isomerization transition states increase effective transition state sizes through second-shell solvation spheres, reducing primary solvation sphere flexibility. These findings clarify the effects of hydrophobic pockets on the stability of coadsorbed water and isomerization transition states and suggest design strategies that modify micropore polarity to influence turnover rates in liquid water.

6.
Nat Commun ; 8(1): 340, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28835704

ABSTRACT

Controlling the charge transfer between a semiconducting catalyst carrier and the supported transition metal active phase represents an elite strategy for fine turning the electronic structure of the catalytic centers, hence their activity and selectivity. These phenomena have been theoretically and experimentally elucidated for oxide supports but remain poorly understood for carbons due to their complex nanoscale structure. Here, we combine advanced spectroscopy and microscopy on model Pd/C samples to decouple the electronic and surface chemistry effects on catalytic performance. Our investigations reveal trends between the charge distribution at the palladium-carbon interface and the metal's selectivity for hydrogenation of multifunctional chemicals. These electronic effects are strong enough to affect the performance of large (~5 nm) Pd particles. Our results also demonstrate how simple thermal treatments can be used to tune the interfacial charge distribution, hereby providing a strategy to rationally design carbon-supported catalysts.Control over charge transfer in carbon-supported metal nanoparticles is essential for designing new catalysts. Here, the authors show that thermal treatments effectively tune the interfacial charge distribution in carbon-supported palladium catalysts with consequential changes in hydrogenation performance.

7.
J Am Chem Soc ; 139(34): 11789-11802, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28825476

ABSTRACT

High CO* coverages lead to rates much higher than Langmuirian treatments predict because co-adsorbate interactions destabilize relevant transition states less than their bound precursors. This is shown here by kinetic and spectroscopic data-interpreted by rate equations modified for thermodynamically nonideal surfaces-and by DFT treatments of CO-covered Ru clusters and lattice models that mimic adlayer densification. At conditions (0.01-1 kPa CO; 500-600 K) which create low CO* coverages (0.3-0.8 ML from in situ infrared spectra), turnover rates are accurately described by Langmuirian models. Infrared bands indicate that adlayers nearly saturate and then gradually densify as pressure increases above 1 kPa CO, and rates become increasingly larger than those predicted from Langmuir treatments (15-fold at 25 kPa and 70-fold at 1 MPa CO). These strong rate enhancements are described here by adapting formalisms for reactions in nonideal and nearly incompressible media (liquids, ultrahigh-pressure gases) to handle the strong co-adsorbate interactions within the nearly incompressible CO* adlayer. These approaches show that rates are enhanced by densifying CO* adlayers because CO hydrogenation has a negative activation area (calculated by DFT), analogous to how increasing pressure enhances rates for liquid-phase reactions with negative activation volumes. Without these co-adsorbate effects and the negative activation area of CO activation, Fischer-Tropsch synthesis would not occur at practical rates. These findings and conceptual frameworks accurately treat dense surface adlayers and are relevant in the general treatment of surface catalysis as it is typically practiced at conditions leading to saturation coverages of reactants or products.

8.
Faraday Discuss ; 197: 59-86, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28332665

ABSTRACT

Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic Cα-H of propanal to produce the CH3CH(-)CH2O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a ß-alkoxide alkanal intermediate. The ß-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C2n intermediates to form C2n-1 3-pentanone as the major product with very small yields of C2n products. This is likely due to the absence of Brønsted acid sites, present on metal oxide catalysts, that rapidly catalyze dehydration of the hemiacetal or hemiacetalate over decarbonylation. The basic surface propoxide that forms on Cu can also attack the carbonyl of a surface propanal to form propyl propionate. Theoretical results indicate that the rates for both aldol condensation and esterification are controlled by reactions between surface propoxide and propanal intermediates. In the condensation reaction, the alkoxide abstracts the weakly acidic hydrogen of the Cα-H of the adsorbed alkanal to form the surface enolate whereas in the esterification reaction the alkoxide nucleophilically attacks the carbonyl group of a vicinal bound alkanal. As both condensation and esterification involve reactions between the same two species in the rate-limiting step, they result in the same rate expression which is consistent with experimental results. The theoretical results indicate that the barriers between condensation and esterification are within 3 kJ mol-1 of one another with esterification being slightly more favored. Experimental results also report small differences in the activation barriers but suggest that condensation is slightly preferred.

9.
J Am Chem Soc ; 137(37): 11984-95, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26356575

ABSTRACT

This study combines theory and experiment to determine the kinetically relevant steps and site requirements for deoxygenation of alkanols and alkanals. These reactants deoxygenate predominantly via decarbonylation (C-C cleavage) instead of C-O hydrogenolysis on Ir, Pt, and Ru, leading to strong inhibition effects by chemisorbed CO (CO*). C-C cleavage occurs via unsaturated species formed in sequential quasi-equilibrated dehydrogenation steps, which replace C-H with C-metal bonds, resulting in strong inhibition by H2, also observed in alkane hydrogenolysis. C-C cleavage occurs in oxygenates only at locations vicinal to the C═O group in RCCO* intermediates, because such adjacency weakens C-C bonds, which also leads to much lower activation enthalpies for oxygenates than hydrocarbons. C-O hydrogenolysis rates are independent of H2 pressure and limited by H*-assisted C-O cleavage in RCHOH* intermediates on surfaces with significant coverages of CO* formed in decarbonylation events. The ratio of C-O hydrogenolysis to decarbonylation rates increased almost 100-fold as the Ir cluster size increased from 0.7 to 7 nm; these trends reflect C-O hydrogenolysis reactions favored on terrace sites, while C-C hydrogenolysis prefers sites with lower coordination, because of the relative size of their transition states and the crowded nature of CO*-covered surfaces. C-O hydrogenolysis becomes the preferred deoxygenation route on Cu-based catalysts, thus avoiding CO inhibition effects. The relative rates of C-O and C-C cleavage on these metals depend on their relative ability to bind C atoms, because C-C cleavage transitions states require an additional M-C attachment.

10.
Acc Chem Res ; 48(5): 1254-62, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25921328

ABSTRACT

Dissociation of the strong bonds in O2, NO, CO, and N2 often involves large activation barriers on low-index planes of metal particles used as catalysts. These kinetic hurdles reflect the noble nature of some metals (O2 activation on Au), the high coverages of co-reactants (O2 activation during CO oxidation on Pt), or the strength of the chemical bonds (NO on Pt, CO and N2 on Ru). High barriers for direct dissociations from density functional theory (DFT) have led to a consensus that "defects", consisting of low-coordination exposed atoms, are required to cleave such bonds, as calculated by theory and experiments for model surfaces at low coverages. Such sites, however, bind intermediates strongly, rendering them unreactive at the high coverages prevalent during catalysis. Such site requirements are also at odds with turnover rates that often depend weakly on cluster size or are actually higher on larger clusters, even though defects, such as corners and edges, are most abundant on small clusters. This Account illustrates how these apparent inconsistencies are resolved through activations of strong bonds assisted by co-adsorbates on crowded low-index surfaces. Catalytic oxidations occur on Au clusters at low temperatures in spite of large activation barriers for O2 dissociation on Au(111) surfaces, leading to proposals that O2 activation requires low-coordination Au atoms or Au-support interfaces. When H2O is present, however, O2 dissociation proceeds with low barriers on Au(111) because chemisorbed peroxides (*OOH* and *HOOH*) form and weaken O-O bonds before cleavage, thus allowing activation on low-index planes. DFT-derived O2 dissociation barriers are much lower on bare Pt surfaces, but such surfaces are nearly saturated with CO* during CO oxidation. A dearth of vacant sites causes O2* to react with CO* to form *OOCO* intermediates that undergo O-O cleavage. NO-H2 reactions occur on Pt clusters saturated with NO* and H*; direct NO* dissociation requires vacant sites that are scarce on such surfaces. N-O bonds cleave instead via H*-assistance to form *HNOH* intermediates, with barriers much lower than for direct NO* dissociation. CO hydrogenation on Co and Ru occurs on crowded surfaces saturated with CO*; rates increase with increasing Co and Ru cluster size, indicating that low-index surfaces on large clusters can activate CO*. Direct CO*dissociation, however, occurs with high activation barriers on low-index Co and Ru surfaces, and even on defect sites (step-edge, corner sites) at high CO* coverages. CO* dissociation proceeds instead with H*-assistance to form *HCOH* species that cleave C-O bonds with lower barriers than direct CO* dissociation, irrespective of surface coordination. H2O increases CO activation rates by assisting H-additions to form *HCOH*, as in the case of peroxide formation in Au-catalyzed oxidations. N2 dissociation steps in NH3 synthesis on Ru and Fe are thought to also require defect sites; yet, barriers on Ru(0001) indicate that H*-assisted N2 activation - unlike O2, CO, and NO - is not significantly more facile than direct N2 dissociation, suggesting that defects and low-index planes may both contribute to NH3 synthesis rates. The activation of strong chemical bonds often occurs via bimolecular reactions. These steps weaken such bonds before cleavage on crowded low-index surfaces, thus avoiding the ubiquitous kinetic hurdles of direct dissociations without requiring defect sites.

11.
J Am Chem Soc ; 136(27): 9664-76, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24961991

ABSTRACT

Methyl substituents at C-C bonds influence hydrogenolysis rates and selectivities of acyclic and cyclic C2-C8 alkanes on Ir, Rh, Ru, and Pt catalysts. C-C cleavage transition states form via equilibrated dehydrogenation steps that replace several C-H bonds with C-metal bonds, desorb H atoms (H*) from saturated surfaces, and form λ H2(g) molecules. Activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)) and λ values for (3)C-(x)C cleavage are larger than for (2)C-(2)C or (2)C-(1)C bonds, irrespective of the composition of metal clusters or the cyclic/acyclic structure of the reactants. (3)C-(x)C bonds cleave through α,ß,γ- or α,ß,γ,δ-bound transition states, as indicated by the agreement between measured activation entropies and those estimated for such structures using statistical mechanics. In contrast, less substituted C-C bonds involve α,ß-bound species with each C atom bound to several surface atoms. These α,ß configurations weaken C-C bonds through back-donation to antibonding orbitals, but such configurations cannot form with (3)C atoms, which have one C-H bond and thus can form only one C-M bond. (3)C-(x)C cleavage involves attachment of other C atoms, which requires endothermic C-H activation and H* desorption steps that lead to larger ΔH(‡) values but also larger ΔS(‡) values (by forming more H2(g)) than for (2)C-(2)C and (2)C-(1)C bonds, irrespective of alkane size (C2-C8) or cyclic/acyclic structure. These data and their mechanistic interpretation indicate that low temperatures and high H2 pressures favor cleavage of less substituted C-C bonds and form more highly branched products from cyclic and acyclic alkanes. Such interpretations and catalytic consequences of substitution seem also relevant to C-X cleavage (X = S, N, O) in desulfurization, denitrogenation, and deoxygenation reactions.

12.
Angew Chem Int Ed Engl ; 52(47): 12273-8, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24123803

ABSTRACT

Water increases Fischer-Tropsch synthesis (FTS) rates on Ru through H-shuttling processes. Chemisorbed hydrogen (H*) transfers its electron to the metal and protonates the O-atom of CO* to form COH*, which subsequently hydrogenates to *HCOH* in the kinetically relevant step. H2 O also increases the chain length of FTS products by mediating the H-transfer steps during reactions of alkyl groups with CO* to form longer-chain alkylidynes and OH*.

13.
J Am Chem Soc ; 133(32): 12675-89, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21736345

ABSTRACT

A ReO(x)-promoted Rh/C catalyst is shown to be selective in the hydrogenolysis of secondary C-O bonds for a broad range of cyclic ethers and polyols, these being important classes of compounds in biomass-derived feedstocks. Experimentally observed reactivity trends, NH(3) temperature-programmed desorption (TPD) profiles, and results from theoretical calculations based on density functional theory (DFT) are consistent with the hypothesis of a bifunctional catalyst that facilitates selective hydrogenolysis of C-O bonds by acid-catalyzed ring-opening and dehydration reactions coupled with metal-catalyzed hydrogenation. The presence of surface acid sites on 4 wt % Rh-ReO(x)/C (1:0.5) was confirmed by NH(3) TPD, and the estimated acid site density and standard enthalpy of NH(3) adsorption were 40 µmol g(-1) and -100 kJ mol(-1), respectively. Results from DFT calculations suggest that hydroxyl groups on rhenium atoms associated with rhodium are acidic, due to the strong binding of oxygen atoms by rhenium, and these groups are likely responsible for proton donation leading to the formation of carbenium ion transition states. Accordingly, the observed reactivity trends are consistent with the stabilization of resulting carbenium ion structures that form upon ring-opening or dehydration. The presence of hydroxyl groups that reside α to carbon in the C-O bond undergoing scission can form oxocarbenium ion intermediates that significantly stabilize the resulting transition states. The mechanistic insights from this work may be extended to provide a general description of a new class of bifunctional heterogeneous catalysts, based on the combination of a highly reducible metal with an oxophilic metal, for the selective C-O hydrogenolysis of biomass-derived feedstocks.

14.
Science ; 330(6000): 74-8, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20929807

ABSTRACT

The selective oxidation of alcohols in aqueous phase over supported metal catalysts is facilitated by high-pH conditions. We have studied the mechanism of ethanol and glycerol oxidation to acids over various supported gold and platinum catalysts. Labeling experiments with (18)O(2) and H(2)(18)O demonstrate that oxygen atoms originating from hydroxide ions instead of molecular oxygen are incorporated into the alcohol during the oxidation reaction. Density functional theory calculations suggest that the reaction path involves both solution-mediated and metal-catalyzed elementary steps. Molecular oxygen is proposed to participate in the catalytic cycle not by dissociation to atomic oxygen but by regenerating hydroxide ions formed via the catalytic decomposition of a peroxide intermediate.

SELECTION OF CITATIONS
SEARCH DETAIL
...