Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Phys ; 36(4): 234-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22228933

ABSTRACT

The aim of this study was to evaluate differences in dose distributions in stereotactic body radiation therapy treatment plans for lung tumors calculated with pencil beam convolution (PBC) algorithm with modified Batho power law (MBPL) versus heterogeneity corrected anisotropic analytical algorithm (AAA) of the Varian Eclipse treatment planning system. The four-dimensional computed tomography images from 20 patients with lung cancer were used to create treatment plans. Plans used five to seven nonopposing coplanar 6 MV beams. Plans generated with the PBC algorithm and MBPL for tissue heterogeneity corrections were optimized to deliver 60 Gy in three fractions to at least 95% of the planned target volume, and the normal tissue doses for spinal cord, esophagus, heart, and ipsilateral bronchus were restricted to less than 18, 27, 30, and 30 Gy, respectively. Plans were recalculated with AAA, retaining identical beam arrangements, photon beam fluences, and monitor units. The pencil beam plans, designed to deliver 60 Gy, delivered on average 51.6 Gy when re-calculated with the AAA, suggesting a reduction of at least 10% to prescription dose is appropriate when calculating with the AAA.

2.
J Appl Clin Med Phys ; 11(3): 3192, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20717086

ABSTRACT

The purpose of this study was to evaluate setup accuracy and quantify random and systematic errors of the BrainLAB stereotactic immobilization mask and localization system using kV on-board imaging. Nine patients were simulated and set up with the BrainLAB stereotactic head immobilization mask and localizer to be treated for brain lesions using single and hypofractions. Orthogonal pairs of projections were acquired using a kV on-board imager mounted on a Varian Trilogy machine. The kV projections were then registered with digitally-reconstructed radiographs (DRR) obtained from treatment planning. Shifts between the kV images and reference DRRs were calculated in the different directions: anterior-posterior (A-P), medial-lateral (R-L) and superior-inferior (S-I). If the shifts were larger than 2mm in any direction, the patient was reset within the immobilization mask until satisfying setup accuracy based on image guidance has been achieved. Shifts as large as 4.5 mm, 5.0 mm, 8.0 mm in the A-P, R-L and S-I directions, respectively, were measured from image registration of kV projections and DRRs. These shifts represent offsets between the treatment and simulation setup using immobilization mask. The mean offsets of 0.1 mm, 0.7 mm, and -1.6 mm represent systematic errors of the BrainLAB localizer in the A-P, R-L and S-I directions, respectively. The mean of the radial shifts is about 1.7 mm. The standard deviations of the shifts were 2.2 mm, 2.0 mm, and 2.6 mm in A-P, R-L and S-I directions, respectively, which represent random patient setup errors with the BrainLAB mask. The Brain-LAB mask provides a noninvasive, practical and flexible immobilization system that keeps the patients in place during treatment. Relying on this system for patient setup might be associated with significant setup errors. Image guidance with the kV on-board imager provides an independent verification technique to ensure accuracy of patient setup. Since the patient may relax or move during treatment, uncontrolled and undetected setup errors may be produced with patients that are not well-immobilized. Therefore, the combination of stereotactic immobilization and image guidance achieves more controlled and accurate patient setup within 2mm in A-P, R-L and S-I directions.


Subject(s)
Brain Neoplasms/surgery , Diagnostic Imaging , Head/radiation effects , Radiometry/methods , Radiosurgery/methods , Radiosurgery/standards , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Head/diagnostic imaging , Humans , Immobilization , Phantoms, Imaging , Quality Control , Radiography , Radiosurgery/instrumentation , Radiotherapy Dosage , Radiotherapy, Conformal
3.
J Appl Clin Med Phys ; 11(1): 3133, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20160698

ABSTRACT

The purpose of this study was to assess the impact of respiratory gating on tumor and normal tissue dosimetry in patients treated with SBRT for early stage non-small cell lung cancer (NSCLC). Twenty patients with stage I NSCLC were studied. Treatment planning was performed using four-dimensional computed tomography (4D CT) with free breathing (Plan I), near-end inhalation (Plan II), and near-end exhalation (Plan III). The prescription dose was 60 Gy in three fractions. The tumor displacement was most pronounced for lower peripheral lesions (average 7.0 mm, range 4.1-14.3 mm) when compared to upper peripheral (average 2.4mm, range 1.0-5.1 mm) or central lesions (average 2.9 mm, range 1.0-4.1 mm). In this study, the pencil beam convolution (PBC) algorithm with modified Batho power law for tissue heterogeneity was used for dose calculation. There were no significant differences in tumor and normal tissue dosimetry among the three gated plans. Tumor location however, significantly influenced tumor doses because of the necessity of respecting normal tissue constraints of centrally located structures. For plans I, II and III, average doses to central lesions were lower as compared with peripheral lesions by 4.88 Gy, 8.24 Gy and 6.93 Gy for minimum PTV and 0.98, 1.65 and 0.87 Gy for mean PTV dose, respectively. As a result, the mean single fraction equivalent dose (SFED) values were also lower for central compared to peripheral lesions. In addition, central lesions resulted in higher mean doses for lung, esophagus, and ipsilateral bronchus by 1.24, 1.93 and 7.75 Gy, respectively. These results indicate that the tumor location is the most important determinant of dosimetric optimization of SBRT plans. Respiratory gating proved unhelpful in the planning of these patients with severe COPD.


Subject(s)
Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/standards , Respiratory-Gated Imaging Techniques/standards , Aged , Aged, 80 and over , Algorithms , Female , Four-Dimensional Computed Tomography , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Radiation Tolerance/physiology , Radiation Tolerance/radiation effects , Radiobiology/standards , Radiotherapy Dosage , Respiratory Mechanics , Technology, Radiologic/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...