Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nature ; 602(7897): 437-441, 2022 02.
Article in English | MEDLINE | ID: mdl-35173345

ABSTRACT

Ever more stringent regulations on greenhouse gas emissions from transportation motivate efforts to revisit materials used for vehicles1. High-strength aluminium alloys often used in aircrafts could help reduce the weight of automobiles, but are susceptible to environmental degradation2,3. Hydrogen 'embrittlement' is often indicated as the main culprit4; however, the exact mechanisms underpinning failure are not precisely known: atomic-scale analysis of H inside an alloy remains a challenge, and this prevents deploying alloy design strategies to enhance the durability of the materials. Here we performed near-atomic-scale analysis of H trapped in second-phase particles and at grain boundaries in a high-strength 7xxx Al alloy. We used these observations to guide atomistic ab initio calculations, which show that the co-segregation of alloying elements and H favours grain boundary decohesion, and the strong partitioning of H into the second-phase particles removes solute H from the matrix, hence preventing H embrittlement. Our insights further advance the mechanistic understanding of H-assisted embrittlement in Al alloys, emphasizing the role of H traps in minimizing cracking and guiding new alloy design.

2.
J Am Chem Soc ; 144(2): 987-994, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34982554

ABSTRACT

Metal nanogels combine a large surface area, a high structural stability, and a high catalytic activity toward a variety of chemical reactions. Their performance is underpinned by the atomic-level distribution of their constituents, yet analyzing their subnanoscale structure and composition to guide property optimization remains extremely challenging. Here, we synthesized Pd nanogels using a conventional wet chemistry route, and a near-atomic-scale analysis reveals that impurities from the reactants (Na and K) are integrated into the grain boundaries of the poly crystalline gel, typically loci of high catalytic activity. We demonstrate that the level of impurities is controlled by the reaction condition. Based on ab initio calculations, we provide a detailed mechanism to explain how surface-bound impurities become trapped at grain boundaries that form as the particles coalesce during synthesis, possibly facilitating their decohesion. If controlled, impurity integration into grain boundaries may offer opportunities for designing new nanogels.

3.
Materials (Basel) ; 14(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917269

ABSTRACT

We present a first-principles assessment of the finite-temperature thermodynamic properties of the intermetallic Al3Sc phase including the complete spectrum of excitations and compare the theoretical findings with our dilatometric and calorimetric measurements. While significant electronic contributions to the heat capacity and thermal expansion are observed near the melting temperature, anharmonic contributions, and electron-phonon coupling effects are found to be relatively small. On the one hand, these accurate methods are used to demonstrate shortcomings of empirical predictions of phase stabilities such as the Neumann-Kopp rule. On the other hand, their combination with elasticity theory was found to provide an upper limit for the size of Al3Sc nanoprecipitates needed to maintain coherency with the host matrix. The chemo-mechanical coupling being responsible for the coherency loss of strengthening precipitates is revealed by a combination of state-of-the-art simulations and dedicated experiments. These findings can be exploited to fine-tune the microstructure of Al-Sc-based alloys to approach optimum mechanical properties.

4.
Nat Mater ; 19(8): 849-854, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32367079

ABSTRACT

Collective interstitial ordering is at the core of martensite formation in Fe-C-based alloys, laying the foundation for high-strength steels. Even though this ordering has been studied extensively for more than a century, some fundamental mechanisms remain elusive. Here, we show the unexpected effects of two correlated phenomena on the ordering mechanism: anharmonicity and segregation. The local anharmonicity in the strain fields induced by interstitials substantially reduces the critical concentration for interstitial ordering, up to a factor of three. Further, the competition between interstitial ordering and segregation results in an effective decrease of interstitial segregation into extended defects for high interstitial concentrations. The mechanism and corresponding impact on interstitial ordering identified here enrich the theory of phase transitions in materials and constitute a crucial step in the design of ultra-high-performance alloys.

5.
Phys Rev Lett ; 123(23): 235501, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868491

ABSTRACT

We obtain phonon lifetimes in aluminium by inelastic neutron scattering experiments, by ab initio molecular dynamics, and by perturbation theory. At elevated temperatures significant discrepancies are found between experiment and perturbation theory, which disappear when using molecular dynamics due to the inclusion of full anharmonicity and the correct treatment of the multiphonon background. We show that multiple-site interactions are small and that local pairwise anharmonicity dominates phonon-phonon interactions, which permits an efficient computation of phonon lifetimes.

6.
Phys Rev Lett ; 121(12): 125902, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30296117

ABSTRACT

We study the mutual coupling of spin fluctuations and lattice vibrations in paramagnetic CrN by combining atomistic spin dynamics and ab initio molecular dynamics. The two degrees of freedom are dynamically coupled, leading to nonadiabatic effects. Those effects suppress the phonon lifetimes at low temperature compared to an adiabatic approach. The dynamic coupling identified here provides an explanation for the experimentally observed unexpected temperature dependence of the thermal conductivity of magnetic semiconductors above the magnetic ordering temperature.

7.
J Am Chem Soc ; 139(41): 14360-14363, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28937775

ABSTRACT

Synthetic pentlandite (Fe4.5Ni4.5S8) is a promising electrocatalyst for hydrogen evolution, demonstrating high current densities, low overpotential, and remarkable stability in bulk form. The depletion of sulfur from the surface of this catalyst during the electrochemical reaction has been proposed to be beneficial for its catalytic performance, but the role of sulfur vacancies and the mechanism determining the reaction kinetics are still unknown. We have performed electrochemical operando studies of the vibrational dynamics of pentlandite under hydrogen evolution reaction conditions using 57Fe nuclear resonant inelastic X-ray scattering. Comparing the measured Fe partial vibrational density of states with density functional theory calculations, we have demonstrated that hydrogen atoms preferentially occupy substitutional positions replacing pre-existing sulfur vacancies. Once all vacancies are filled, the protonation proceeds interstitially, which slows down the reaction. Our results highlight the beneficial role of sulfur vacancies in the electrocatalytic performance of pentlandite and give insights into the hydrogen adsorption mechanism during the reaction.

8.
Philos Trans A Math Phys Eng Sci ; 375(2098)2017 07 28.
Article in English | MEDLINE | ID: mdl-28607182

ABSTRACT

The behaviour of hydrogen at structural defects such as grain boundaries plays a critical role in the phenomenon of hydrogen embrittlement. However, characterization of the energetics and diffusion of hydrogen in the vicinity of such extended defects using conventional ab initio techniques is challenging due to the relatively large system sizes required when dealing with realistic grain boundary geometries. In order to be able to access the required system sizes, as well as high-throughput testing of a large number of configurations, while remaining within a quantum-mechanical framework, an environmental tight-binding model for the iron-hydrogen system has been developed. The resulting model is applied to study the behaviour of hydrogen at a class of low-energy {110}-terminated twist grain boundaries in α-Fe. We find that, for particular Σ values within the coincidence site lattice description, the atomic geometry at the interface plane provides extremely favourable trap sites for H, which also possess high escape barriers for diffusion. By contrast, via simulated tensile testing, weakly trapped hydrogen at the interface plane of the bulk-like Σ3 boundary acts as a 'glue' for the boundary, increasing both the energetic barrier and the elongation to rupture.This article is part of the themed issue 'The challenges of hydrogen and metals'.

9.
Phys Rev Lett ; 118(23): 236101, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644663

ABSTRACT

Employing ab initio calculations we demonstrate that the complex structural modulations experimentally observed in ultrathin Fe films on Cu(001) originate from Fe bulk phases that arise under extreme deformations. Specifically, we show that the structural modulations correspond to the motifs observed when transforming fcc Fe to bcc Fe in the Pitsch orientation relationship [(001)_{fcc}||(11[over ¯]0)_{bcc}]. The observed structural equivalence between surface and unstable bulk structures naturally explains the experimentally reported magnetic and structural transitions when going from low (two to four MLs) to intermediate (four to ten MLs) film coverages.

10.
J Comput Chem ; 35(31): 2239-44, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25250795

ABSTRACT

Hydrogen interstitials in austenitic Fe-Mn alloys were studied using density-functional theory to gain insights into the mechanisms of hydrogen embrittlement in high-strength Mn steels. The investigations reveal that H atoms at octahedral interstitial sites prefer a local environment containing Mn atoms rather than Fe atoms. This phenomenon is closely examined combining total energy calculations and crystal orbital Hamilton population analysis. Contributions from various electronic phenomena such as elastic, chemical, and magnetic effects are characterized. The primary reason for the environmental preference is a volumetric effect, which causes a linear dependence on the number of nearest-neighbour Mn atoms. A secondary electronic/magnetic effect explains the deviations from this linearity.

11.
J Phys Condens Matter ; 26(33): 335401, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25071092

ABSTRACT

Thermophysical properties, such as heat capacity, bulk modulus and thermal expansion, are of great importance for many technological applications and are traditionally determined experimentally. With the rapid development of computational methods, however, first-principles computed temperature-dependent data are nowadays accessible. We evaluate various computational realizations of such data in comparison to the experimental scatter. The work is focussed on the impact of different first-principles codes (QUANTUM ESPRESSO and VASP), pseudopotentials (ultrasoft and projector augmented wave) as well as phonon determination methods (linear response and direct force constant method) on these properties. Based on the analysis of data for two pure elements, Cr and Ni, consequences for the reliability of temperature-dependent first-principles data in computational thermodynamics are discussed.

12.
Wiley Interdiscip Rev Comput Mol Sci ; 3(5): 438-448, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24563665

ABSTRACT

Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

13.
Acta Biomater ; 6(12): 4506-12, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20650336

ABSTRACT

Arthropoda, which represent nearly 80% of all known animal species, are protected by an exoskeleton formed by their cuticle. The cuticle represents a hierarchically structured multifunctional biocomposite based on chitin and proteins. Some groups, such as Crustacea, reinforce the load-bearing parts of their cuticle with calcite. As the calcite sometimes contains Mg it was speculated that Mg may have a stiffening impact on the mechanical properties of the cuticle (Becker et al., Dalton Trans. (2005) 1814). Motivated by these facts, we present a theoretical parameter-free quantum-mechanical study of the phase stability and structural and elastic properties of Mg-substituted calcite crystals. The Mg-substitutions were chosen as examples of states that occur in complex chemical environments typical for biological systems in which calcite crystals contain impurities, the role of which is still the topic of debate. Density functional theory calculations of bulk (Ca,Mg)CO3 were performed employing 30-atom supercells within the generalized gradient approximation as implemented in the Vienna Ab-initio Simulation Package. Based on the calculated thermodynamic results, low concentrations of Mg atoms are predicted to be stable in calcite crystals in agreement with experimental findings. Examining the structural characteristics, Mg additions nearly linearly reduce the volume of substituted crystals. The predicted elastic bulk modulus results reveal that the Mg substitution nearly linearly stiffens the calcite crystals. Due to the quite large size-mismatch of Mg and Ca atoms, Mg substitution results in local distortions such as off-planar tilting of the CO3²â» group.


Subject(s)
Calcium Carbonate/chemistry , Elasticity , Magnesium/chemistry , Models, Chemical , Animals , Brachyura/chemistry , Brachyura/ultrastructure , Cations , Crystallization , Elastic Modulus , Elements , Integumentary System , Thermodynamics
14.
Nat Mater ; 7(12): 972-7, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19011618

ABSTRACT

Phase-change materials are characterized by a unique property portfolio well suited for data storage applications. Here, a first treasure map for phase-change materials is presented on the basis of a fundamental understanding of the bonding characteristics. This map is spanned by two coordinates that can be calculated just from the composition, and represent the degree of ionicity and the tendency towards hybridization ('covalency') of the bonding. A small magnitude of both quantities is an inherent characteristic of phase-change materials. This coordinate scheme enables a prediction of trends for the physical properties on changing stoichiometry.

15.
J Phys Condens Matter ; 20(6): 064219, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-21693881

ABSTRACT

Ni(2)MnGa is a typical example of a Heusler alloy that undergoes a martensitic transformation. In the high temperature austenitic phase it has a cubic L2(1) structure, whereas below 200 K the symmetry is reduced by an orthorhombic distortion. Despite lattice deformations of more than 6% and large strains connected to this change, it is completely reversible. Therefore, Ni(2)MnGa serves as a shape memory compound. The fact that Ni(2)MnGa additionally orders ferromagnetically below 360 K makes the material particularly attractive for applications in actuators and sensors. Nevertheless, its structural details in the martensitic phase are still a subject of much debate. Several shuffling structures have been observed experimentally. The temperature and magnetic field dependent transformations between these structures need to be understood for improvement of the magnetic switching (e.g. operation with higher reliability and smaller magnetic fields). Our tool for identifying the stable structures and the low energy transition paths is the calculation of free energy surfaces as functions of key reaction coordinates (e.g. the ratio c/a) in density functional theory. (The generalized gradient approximation to the exchange-correlation functional and the projector augmented wave approach implemented in VASP (Vienna Ab initio Simulation Package) were used in these investigations.) The different variants of the low symmetry orthorhombic structures lead to characteristic minima on this surface. However, the ab initio determination of the experimentally observed shuffling structures is challenging, due to the large phase space of possible atomic positions and the small shuffling formation energies of only a few meV per unit cell. Hence, we used the quasiharmonic approximation in order to compute and analyze phonon spectra. Starting with the symmetric structure of the austenite, the TA(2) (TA standing for transverse acoustic) phonon dispersion shows a phonon softening along the [110] direction. We were able to extract detailed information about the type of this lattice instability from the eigenvectors of the unstable phonon modes. By setting up the corresponding modulated harmonics in supercell calculations, we systematically and efficiently identified stable shuffling structures. The resulting structural phases (austenite, martensite, pre-martensite) allow us to assign and to interpret the experimental observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...