Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Wildl Dis ; 60(2): 542-545, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38345461

ABSTRACT

Sera from 391 waterbirds from eight USA states were tested for Toxoplasma gondii antibodies using the modified agglutination test. Fifteen different waterbird species (26.6%; n=104) were seropositive. Of the adults, 25.4% (n=52) showed a significantly higher T. gondii seroprevalence compared with juveniles (13.4%; n=17); however, sex was not a significant factor.


Subject(s)
Charadriiformes , Toxoplasma , Toxoplasmosis, Animal , Animals , Seroepidemiologic Studies , Toxoplasmosis, Animal/epidemiology , Antibodies, Protozoan , Agglutination Tests/veterinary
2.
Biol Lett ; 19(1): 20220460, 2023 01.
Article in English | MEDLINE | ID: mdl-36651032

ABSTRACT

Social learning can reduce the costs associated with trial-and-error learning. There is speculation that social learning could contribute to trap and bait avoidance in invasive species like the common brushtail possum (Trichosurus vulpecula)-a marsupial for which social learning has not previously been investigated. In large outdoor pens, we presented wild-caught 'demonstrator' possums with puzzle devices containing an attractive food reward; 2 of 8 demonstrators accessed the reward the first night the puzzle was presented and another three succeeded on later nights. Meanwhile, 'observer' possums in adjacent pens watched the demonstrators for five nights and then were given the opportunity to solve the puzzle themselves; 15 of 15 succeeded on their first night (a highly significant improvement). This experiment thus provides strong evidence of social learning by common brushtail possums. Future research should investigate whether information about aversive stimuli (such as traps and toxic baits) can similarly be transmitted between possums by social learning; if so, this could have important implications for possum pest control.


Subject(s)
Marsupialia , Social Learning , Trichosurus , Animals , Introduced Species , Learning
3.
Parasit Vectors ; 15(1): 31, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057829

ABSTRACT

BACKGROUND: White-tailed deer (Odocoileus virginianus) host numerous ectoparasitic species in the eastern USA, most notably various species of ticks and two species of deer keds. Several pathogens transmitted by ticks to humans and other animal hosts have also been found in deer keds. Little is known about the acquisition and potential for transmission of these pathogens by deer keds; however, tick-deer ked co-feeding transmission is one possible scenario. On-host localization of ticks and deer keds on white-tailed deer was evaluated across several geographical regions of the eastern US to define tick-deer ked spatial relationships on host deer, which may impact the vector-borne disease ecology of these ectoparasites. METHODS: Ticks and deer keds were collected from hunter-harvested white-tailed deer from six states in the eastern US. Each deer was divided into three body sections, and each section was checked for 4 person-minutes. Differences in ectoparasite counts across body sections and/or states were evaluated using a Bayesian generalized mixed model. RESULTS: A total of 168 white-tailed deer were inspected for ticks and deer keds across the study sites. Ticks (n = 1636) were collected from all surveyed states, with Ixodes scapularis (n = 1427) being the predominant species. Counts of I. scapularis from the head and front sections were greater than from the rear section. Neotropical deer keds (Lipoptena mazamae) from Alabama and Tennessee (n = 247) were more often found on the rear body section. European deer keds from Pennsylvania (all Lipoptena cervi, n = 314) were found on all body sections of deer. CONCLUSIONS: The distributions of ticks and deer keds on white-tailed deer were significantly different from each other, providing the first evidence of possible on-host niche partitioning of ticks and two geographically distinct deer ked species (L. cervi in the northeast and L. mazamae in the southeast). These differences in spatial distributions may have implications for acquisition and/or transmission of vector-borne pathogens and therefore warrant further study over a wider geographic range and longer time frame.


Subject(s)
Deer/parasitology , Diptera/physiology , Ixodidae/physiology , Tick Infestations/epidemiology , Tick Infestations/veterinary , Alabama/epidemiology , Animals , Bayes Theorem , Pennsylvania/epidemiology , Tennessee/epidemiology
4.
J Med Entomol ; 59(1): 267-272, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34718657

ABSTRACT

Questing behavior and host associations of immature blacklegged ticks, Ixodes scapularis Say, from the southeastern United States are known to differ from those in the north. To elucidate these relationships we describe host associations of larval and nymphal I. scapularis from 8 lizard species sampled from 5 sites in the southeastern U.S. Larvae and nymphs attached in greater numbers to larger lizards than to smaller lizards, with differential levels of attachment to different lizard species. Blacklegged ticks are generally attached to skinks of the genus Plestiodon in greater numbers per unit lizard weight than to anoles (Anolis) or fence lizards (Sceloporus). The broad-headed skink, Plestiodon laticeps (Schneider), was a particularly important host for immature I. scapularis in our study and in several previous studies of tick-host associations in the southeast. Blacklegged ticks show selective attachment to Plestiodon lizard hosts in the southeast, but whether this results from behavioral host preferences or from ecological factors such as timing or microhabitat distributions of tick questing and host activity remains to be determined.


Subject(s)
Ixodes , Lizards/parasitology , Animals , Arthropod Vectors/classification , Biodiversity , Ecosystem , Host-Parasite Interactions , Larva , Nymph , Population Density , Seasons , Southeastern United States , Species Specificity , Tick Infestations
6.
J Med Entomol ; 58(4): 1565-1587, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33885784

ABSTRACT

Wildlife vertebrate hosts are integral to enzootic cycles of tick-borne pathogens, and in some cases have played key roles in the recent rise of ticks and tick-borne diseases in North America. In this forum article, we highlight roles that wildlife hosts play in the maintenance and transmission of zoonotic, companion animal, livestock, and wildlife tick-borne pathogens. We begin by illustrating how wildlife contribute directly and indirectly to the increase and geographic expansion of ticks and their associated pathogens. Wildlife provide blood meals for tick growth and reproduction; serve as pathogen reservoirs; and can disperse ticks and pathogens-either through natural movement (e.g., avian migration) or through human-facilitated movement (e.g., wildlife translocations and trade). We then discuss opportunities to manage tick-borne disease through actions directed at wildlife hosts. To conclude, we highlight key gaps in our understanding of the ecology of tick-host interactions, emphasizing that wildlife host communities are themselves a very dynamic component of tick-pathogen-host systems and therefore complicate management of tick-borne diseases, and should be taken into account when considering host-targeted approaches. Effective management of wildlife to reduce tick-borne disease risk further requires consideration of the 'human dimensions' of wildlife management. This includes understanding the public's diverse views and values about wildlife and wildlife impacts-including the perceived role of wildlife in fostering tick-borne diseases. Public health agencies should capitalize on the expertise of wildlife agencies when developing strategies to reduce tick-borne disease risks.


Subject(s)
Animals, Wild/parasitology , Arachnid Vectors , Host-Parasite Interactions , Tick-Borne Diseases/transmission , Ticks , Animal Migration , Animals , Humans , North America , Pets/parasitology , Tick Control
7.
PLoS Biol ; 19(1): e3001066, 2021 01.
Article in English | MEDLINE | ID: mdl-33507921

ABSTRACT

Lyme disease is common in the northeastern United States, but rare in the southeast, even though the tick vector is found in both regions. Infection prevalence of Lyme spirochetes in host-seeking ticks, an important component to the risk of Lyme disease, is also high in the northeast and northern midwest, but declines sharply in the south. As ticks must acquire Lyme spirochetes from infected vertebrate hosts, the role of wildlife species composition on Lyme disease risk has been a topic of lively academic discussion. We compared tick-vertebrate host interactions using standardized sampling methods among 8 sites scattered throughout the eastern US. Geographical trends in diversity of tick hosts are gradual and do not match the sharp decline in prevalence at southern sites, but tick-host associations show a clear shift from mammals in the north to reptiles in the south. Tick infection prevalence declines north to south largely because of high tick infestation of efficient spirochete reservoir hosts (rodents and shrews) in the north but not in the south. Minimal infestation of small mammals in the south results from strong selective attachment to lizards such as skinks (which are inefficient reservoirs for Lyme spirochetes) in the southern states. Selective host choice, along with latitudinal differences in tick host-seeking behavior and variations in tick densities, explains the geographic pattern of Lyme disease in the eastern US.


Subject(s)
Disease Vectors , Host-Seeking Behavior/physiology , Lyme Disease/epidemiology , Animals , Animals, Wild , Borrelia burgdorferi/physiology , Climate , Disease Reservoirs/microbiology , Disease Reservoirs/statistics & numerical data , Disease Vectors/classification , Geography , Host Specificity/physiology , Humans , Lizards/microbiology , Lyme Disease/transmission , Mice , Population Density , Prevalence , Rats , Sciuridae/microbiology , Shrews/microbiology , Tick Infestations/epidemiology , Tick Infestations/microbiology , Tick Infestations/transmission , Ticks/microbiology , United States/epidemiology
8.
Ticks Tick Borne Dis ; 12(1): 101556, 2021 01.
Article in English | MEDLINE | ID: mdl-33035757

ABSTRACT

Measures of acarological risk of exposure to Ixodes scapularis-borne disease agents typically focus on nymphs; however, the relapsing fever group spirochete Borrelia miyamotoi can be passed transovarially, and I. scapularis larvae are capable of transmitting B. miyamotoi to their hosts. To quantify the larval contribution to acarological risk, relative to nymphs and adults, we collected questing I. scapularis for 3 yr at Fort McCoy, Wisconsin (WI, n = 23,367 ticks), and Cape Cod, Massachusetts (MA, n = 4190) in the United States. Borrelia miyamotoi infection prevalence was estimated for I. scapularis larvae, nymphs, females, and males, respectively, as 0.88, 2.05, 0.63, and 1.22 % from the WI site and 0.33, 2.32, 2.83, and 2.11 % from the MA site. Densities of B. miyamotoi-infected ticks (DIT, per 1000 m2) were estimated for larvae, nymphs, females, and males, respectively, as 0.36, 0.14, 0.01, and 0.03 from the WI site and 0.05, 0.06, 0.03, and 0.02 from the MA site. Thus, although larval infection prevalence with B. miyamotoi was significantly lower than that of nymphs and similar to that of adults, because of their higher abundance, the larval contribution to the overall DIT was similar to that of nymphs and trended towards a greater contribution than adults. Assuming homogenous contact rates with humans, these results suggest that eco-epidemiological investigations of B. miyamotoi disease in North America should include larvae. A fuller appreciation of the epidemiological implications of these results, therefore, requires an examination of the heterogeneity in contact rates with humans among life stages.


Subject(s)
Borrelia/isolation & purification , Ixodes/physiology , Relapsing Fever/epidemiology , Animals , Female , Humans , Ixodes/growth & development , Larva/growth & development , Larva/physiology , Male , Massachusetts/epidemiology , Nymph/growth & development , Nymph/physiology , Relapsing Fever/microbiology , Seasons , Wisconsin/epidemiology
9.
Proc Biol Sci ; 287(1941): 20202278, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33352074

ABSTRACT

Lyme disease, the most prevalent vector-borne disease in North America, is increasing in incidence and geographic distribution as the tick vector, Ixodes scapularis, spreads to new regions. We re-construct the spatial-temporal invasion of the tick and human disease in the Midwestern US, a major focus of Lyme disease transmission, from 1967 to 2018, to analyse the influence of spatial factors on the geographic spread. A regression model indicates that three spatial factors-proximity to a previously invaded county, forest cover and adjacency to a river-collectively predict tick occurrence. Validation of the predictive capability of this model correctly predicts counties invaded or uninvaded with 90.6% and 98.5% accuracy, respectively. Reported incidence increases in counties after the first report of the tick; based on this modelled relationship, we identify 31 counties where we suspect I. scapularis already occurs yet remains undetected. Finally, we apply the model to forecast tick establishment by 2021 and predict 42 additional counties where I. scapularis will probably be detected based upon historical drivers of geographic spread. Our findings leverage resources dedicated to tick and human disease reporting and provide the opportunity to take proactive steps (e.g. educational efforts) to prevent and limit transmission in areas of future geographic spread.


Subject(s)
Ixodes , Lyme Disease/epidemiology , Animals , Forests , Humans , Incidence , North America/epidemiology
10.
Ticks Tick Borne Dis ; 11(1): 101271, 2020 01.
Article in English | MEDLINE | ID: mdl-31677969

ABSTRACT

Ixodes scapularis is the primary vector of Lyme disease spirochetes in eastern and central North America, and local densities of this tick can affect human disease risk. We sampled larvae and nymphs from sites in Massachusetts and Wisconsin, USA, using flag/drag devices and by collecting ticks from hosts, and measured environmental variables to evaluate the environmental factors that affect local distribution and abundance of I. scapularis. Our sites were all forested areas with known I. scapularis populations. Environmental variables included those associated with weather (e.g., temperature and relative humidity), vegetation characteristics (at canopy, shrub, and ground levels), and host abundance (small and medium-sized mammals and reptiles). The numbers of larvae on animals at a given site and season showed a logarithmic relationship to the numbers in flag/drag samples, suggesting limitation in the numbers on host animals. The numbers of nymphs on animals showed no relationship to the numbers in flag/drag samples. These results suggest that only a small proportion of larvae and nymphs found hosts because in neither stage did the numbers of host-seeking ticks decline with increased numbers on hosts. Canopy cover was predictive of larval and nymphal numbers in flag/drag samples, but not of numbers on hosts. Numbers of small and medium-sized mammal hosts the previous year were generally not predictive of the current year's tick numbers, except that mouse abundance predicted log numbers of nymphs on all hosts the following year. Some measures of larval abundance were predictive of nymphal numbers the following year. The mean number of larvae per mouse was well predicted by measures of overall larval abundance (based on flag/drag samples and samples from all hosts), and some environmental factors contributed significantly to the model. In contrast, the mean numbers of nymphs per mouse were not well predicted by environmental variables, only by overall nymphal abundance on hosts. Therefore, larvae respond differently than nymphs to environmental factors. Furthermore, flag/drag samples provide different information about nymphal numbers than do samples from hosts. Flag/drag samples can provide information about human risk of acquiring nymph-borne pathogens because they provide information on the densities of ticks that might encounter humans, but to understand the epizootiology of tick-borne agents both flag/drag and host infestation data are needed.


Subject(s)
Forests , Host-Parasite Interactions , Humidity , Ixodes/physiology , Peromyscus/parasitology , Animals , Ixodes/growth & development , Larva/growth & development , Larva/physiology , Massachusetts , Nymph/growth & development , Nymph/physiology , Population Dynamics , Wisconsin
12.
Ticks Tick Borne Dis ; 10(3): 682-689, 2019 04.
Article in English | MEDLINE | ID: mdl-30846418

ABSTRACT

Borrelia miyamotoi is a relapsing fever spirochete transmitted by ticks in the Ixodes ricinus complex. In the eastern United States, B. miyamotoi is transmitted by I. scapularis, which also vectors several other pathogens including B. burgdorferi sensu stricto. In contrast to Lyme borreliae, B. miyamotoi can be transmitted vertically from infected female ticks to their progeny. Therefore, in addition to nymphs and adults, larvae can vector B. miyamotoi to wildlife and human hosts. Two widely varying filial infection prevalence (FIP) estimates - 6% and 73% - have been reported previously from two vertically infected larval clutches; to our knowledge, no other estimates of FIP or transovarial transmission (TOT) rates for B. miyamotoi have been described in the literature. Thus, we investigated TOT and FIP of larval clutches derived from engorged females collected from hunter-harvested white-tailed deer in 2015 (n = 664) and 2016 (n = 599) from Maine, New Hampshire, Tennessee, and Wisconsin. After engorged females oviposited in the lab, they (n = 492) were tested for B. miyamotoi infection by PCR. Subsequently, from each clutch produced by an infected female, larval pools, as well as 100 individual eggs or larvae, were tested. The TOT rate of the 11 infected females was 90.9% (95% CI; 57.1-99.5%) and the mean FIP of the resulting larval clutches was 84.4% (95% CI; 68.1-100%). Even though the overall observed vertical transmission rate (the product of TOT and FIP; 76.7%, 95% CI; 44.6-93.3%) was high, additional horizontal transmission may be required for enzootic maintenance of B. miyamotoi based on the results of a previously published deterministic model. Further investigation of TOT and FIP variability and the underlying mechanisms, both in nature and the laboratory, will be needed to resolve this question. Meanwhile, studies quantifying the acarological risk of Borrelia miyamotoi disease need to consider not only nymphs and adults, but larval I. scapularis as well.


Subject(s)
Borrelia Infections/veterinary , Borrelia/isolation & purification , Deer/parasitology , Infectious Disease Transmission, Vertical , Ixodes/microbiology , Animals , Animals, Wild/parasitology , Borrelia/genetics , Borrelia Infections/epidemiology , Borrelia Infections/transmission , Female , Larva/microbiology , Maine/epidemiology , New Hampshire/epidemiology , Nymph/microbiology , Polymerase Chain Reaction , Tennessee/epidemiology
13.
Ticks Tick Borne Dis ; 10(3): 553-563, 2019 04.
Article in English | MEDLINE | ID: mdl-30709659

ABSTRACT

Most people who contract Lyme borreliosis in the eastern United States (US) acquire infection from the bite of the nymphal life stage of the vector tick Ixodes scapularis, which is present in all eastern states. Yet <5% of Lyme borreliosis cases are reported from outside the north-central and northeastern US. Geographical differences in nymphal questing (i.e., host-seeking behavior) may be epidemiologically important in explaining this latitudinal gradient in Lyme borreliosis incidence. Using field enclosures and a 'common garden' experimental design at two field sites, we directly tested this hypothesis by observing above-litter questing of laboratory-raised nymphal I. scapularis whose parents were collected from 15 locations (= origins) across the species' range. Relative to southern nymphs from origins considered to be of low acarologic risk, northern nymphs from high-risk origins were eight times as likely to quest on or above the surface of the leaf litter. This regional variation in vector behavior (specifically, the propensity of southern nymphs to remain under leaf litter) was highly correlated with Lyme borreliosis incidence in nymphs' counties of origin. We conclude that nymphal host-seeking behavior is a key factor contributing to the low incidence of Lyme borreliosis in southern states. Expansion of northern I. scapularis populations could lead to increased incidence in southern states of Lyme borreliosis and other diseases vectored by this tick, if the 'northern' host-seeking behavior of immigrant nymphs is retained. Systematic surveillance for I. scapularis nymphs questing above the leaf litter in southern states will help predict future geographic change in I. scapularis-borne disease risk.


Subject(s)
Appetitive Behavior , Ixodes/physiology , Lyme Disease/epidemiology , Nymph/physiology , Animals , Female , Geography , Incidence , New England/epidemiology , Pilot Projects , Plant Leaves , Prevalence , Risk Factors , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology
14.
J Med Entomol ; 55(6): 1386-1401, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-29986046

ABSTRACT

The seasonal activity pattern of immature Ixodes scapularis Say (Acari: Ixodidae) varies geographically in the United States, which may affect the efficiency of transmission cycles of pathogens transmitted by this species. To study the factors that determine seasonality, a multiyear study at seven sites across the geographic range of I. scapularis systematically collected questing ticks by flagging/dragging, and feeding ticks by capture of their hosts. The observed phenology patterns were consistent with previous studies reporting geographic variation in seasonal tick activity. Predictions of seasonal activity for each site were obtained from an I. scapularis simulation model calibrated using contemporaneous weather data. A range of scenarios for life-cycle processes-including different regimes of temperature-independent behavioral and developmental diapause, variations in temperature-development rate relationships, and temperature-dependent tick activity-were used in model formulations. These formulations produced a range of simulations of seasonal activity for each site and were compared against the field observed tick data using negative binomial regression models. Best fit scenarios were chosen for each site on the basis of Akaike's information criterion and regression model parameters. This analysis suggests that temperature-independent diapause mechanisms explain some key observed variations in I. scapularis seasonality, and are responsible in part for geographic variations in I. scapularis seasonality in the United States. However, diapause appears to operate in idiosyncratic ways in different regions of the United States, so further studies on populations in different regions will be needed to enable predictive modeling of climatic and climate change effects on I. scapularis seasonal activity and pathogen transmission.


Subject(s)
Arachnid Vectors/growth & development , Diapause, Insect , Ixodes/growth & development , Animals , Lyme Disease/transmission , Models, Biological , Seasons , United States
15.
Emerg Infect Dis ; 24(9): 1713-1716, 2018 09.
Article in English | MEDLINE | ID: mdl-30044211

ABSTRACT

In 2017, we surveyed forests in the upper Tennessee Valley, Tennessee, USA. We found Ixodes scapularis ticks established in 23 of 26 counties, 4 of which had Borrelia burgdorferi sensu stricto-infected ticks. Public health officials should be vigilant for increasing Lyme disease incidence in this region.


Subject(s)
Borrelia burgdorferi/isolation & purification , Insect Vectors/microbiology , Ixodidae/microbiology , Lyme Disease/transmission , Animals , Lyme Disease/prevention & control , Prevalence , Tennessee/epidemiology
16.
J Wildl Dis ; 54(4): 874-876, 2018 10.
Article in English | MEDLINE | ID: mdl-29902128

ABSTRACT

We analyzed 69 eastern Tennessee wildlife samples for Baylisascaris spp. during 2011. The prevalence of Baylisascaris spp. in raccoons ( Procyon lotor) was 16% (8/49), an increase compared to previous surveys in this region. One Virginia opossum ( Didelphis virginiana) had eggs in its feces, indicating that opossums can play a role in Baylisascaris spp. transmission.


Subject(s)
Animals, Wild , Ascaridida Infections/veterinary , Ascaridoidea , Didelphis/parasitology , Feces/parasitology , Animals , Ascaridida Infections/epidemiology , Ascaridida Infections/parasitology , Carnivora/parasitology , Tennessee
17.
J Med Entomol ; 55(3): 501-514, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29394366

ABSTRACT

In the early 1980s, Ixodes spp. ticks were implicated as the key North American vectors of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt and Brenner) (Spirocheatales: Spirochaetaceae), the etiological agent of Lyme disease. Concurrently, other human-biting tick species were investigated as potential B. burgdorferi vectors. Rashes thought to be erythema migrans were observed in patients bitten by Amblyomma americanum (L.) (Acari: Ixodidae) ticks, and spirochetes were visualized in a small percentage of A. americanum using fluorescent antibody staining methods, sparking interest in this species as a candidate vector of B. burgdorferi. Using molecular methods, the spirochetes were subsequently described as Borrelia lonestari sp. nov. (Spirocheatales: Spirochaetaceae), a transovarially transmitted relapsing fever Borrelia of uncertain clinical significance. In total, 54 surveys from more than 35 research groups, involving more than 52,000 ticks, have revealed a low prevalence of B. lonestari, and scarce B. burgdorferi, in A. americanum. In Lyme disease-endemic areas, A. americanum commonly feeds on B. burgdorferi-infected hosts; the extremely low prevalence of B. burgdorferi in this tick results from a saliva barrier to acquiring infection from infected hosts. At least nine transmission experiments involving B. burgdorferi in A. americanum have failed to demonstrate vector competency. Advancements in molecular analysis strongly suggest that initial reports of B. burgdorferi in A. americanum across many states were misidentified B. lonestari, or DNA contamination, yet the early reports continue to be cited without regard to the later clarifying studies. In this article, the surveillance and vector competency studies of B. burgdorferi in A. americanum are reviewed, and we conclude that A. americanum is not a vector of B. burgdorferi.


Subject(s)
Arachnid Vectors/microbiology , Borrelia burgdorferi/physiology , Ixodidae/microbiology , Lyme Disease/transmission , Animals
18.
Parasit Vectors ; 10(1): 508, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29061166

ABSTRACT

BACKGROUND: Toxoplasma gondii is a widespread protozoan parasite that infects humans and other animals. Previous studies indicate some genotypes of T. gondii are more frequently isolated in wildlife than agricultural animals, suggesting a wild/feral animal diversity model. To determine seroprevalence and genetic diversity of T. gondii in southeastern US wildlife, we collected sera from 471 wild animals, including 453 mammals and 18 birds, between 2011 and 2014. These serum samples were assayed for T. gondii infection using the modified agglutination test (MAT). Heart or tongue tissues from 66 seropositive animals were bioassayed in mice and 19 isolates were obtained. The isolated parasites were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method employing 10 genetic markers. RESULTS: One hundred and ninety-six of 471 samples (41.6%) had a titer ≥1:32 and were considered positive for T. gondii infection. Of 453 mammals, 195 (43%) were seropositive, whereas only one (5.6%) of 18 birds was seropositive. The seroprevalence in mammals was significantly higher than in the birds. Mammalian hosts with adequate samples size (≥ 20) comprised white-tailed deer (n = 241), feral hogs (n = 100), raccoons (n = 34) and coyotes (n = 22), with seroprevalences of 41.0%, 51.0%, 50.0% and 72.7%, respectively. Coyotes had significantly higher seroprevalence than the white-tailed deer. Genotyping revealed five distinct genotypes, including the ToxoDB PCR-RFLP genotype #5 (a.k.a type 12) for 15 isolates, genotype #3 (a.k.a. type II) for 1 isolate, and genotypes #154, #167 and #216, each for 1 isolate. The results showed moderate to high infection rates of T. gondii in white-tailed deer, feral hogs, raccoons and coyotes. Genotyping results indicated limited genetic diversity and a dominance of genotype #5, which has been reported as a major type in wildlife in North America. CONCLUSIONS: We conclude that T. gondii infection is common in game animals (white-tailed deer and feral hogs) in the southeastern US, which may pose a food safety risk to humans. Further research is necessary to understand T. gondii transmission from wildlife to farm animals and humans.


Subject(s)
Animals, Wild/parasitology , Antibodies, Protozoan/blood , Genetic Variation , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasmosis, Animal/epidemiology , Agglutination Tests , Animals , Biological Assay , DNA, Protozoan/genetics , Deer/parasitology , Genotype , Heart/parasitology , Humans , Mice , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Seroepidemiologic Studies , Southeastern United States/epidemiology , Tongue/parasitology , Toxoplasmosis, Animal/parasitology
19.
Open Forum Infect Dis ; 4(1): ofw269, 2017.
Article in English | MEDLINE | ID: mdl-28480261

ABSTRACT

BACKGROUND: Most Lyme disease cases in the Midwestern United States are reported in Minnesota and Wisconsin. In recent years, however, a widening geographic extent of Lyme disease has been noted with evidence of expansion eastwards into Michigan and neighboring states with historically low incidence rates. METHODS: We collected confirmed and probable cases of Lyme disease from 2000 through 2014 from the Michigan Department of Health and Human Services, entering them in a geographic information system. We performed spatial focal cluster analyses to characterize Lyme disease expansion. We compared the distribution of human cases with recent Ixodes scapularis tick distribution studies. RESULTS: Lyme disease cases in both the Upper and Lower Peninsulas of Michigan expanded more than 5-fold over the study period. Although increases were seen throughout the Upper Peninsula, the Lower Peninsula particularly expanded along the Indiana border north along the eastern shore of Lake Michigan. Human cases corresponded to a simultaneous expansion in established I scapularis tick populations. CONCLUSIONS: The geographic distribution of Lyme disease cases significantly expanded in Michigan between 2000 and 2014, particularly northward along the Lake Michigan shore. If such dynamic trends continue, Michigan-and possibly neighboring areas of Indiana, Ohio, and Ontario, Canada-can expect a continued increase in Lyme disease cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...