Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Crohns Colitis ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642332

ABSTRACT

BACKGROUND AND AIMS: Perianal fistulizing Crohn's disease (PFCD) is an aggressive phenotype of Crohn's disease defined by frequent relapses and disabling symptoms. A novel consensus classification system was recently outlined by the TOpCLASS consortium that seeks to unify disease severity with patient-centered goals but has not yet been validated. We aimed to apply this to a real-world cohort and identify factors that predict transition between classes over time. METHODS: We identified all patients with PFCD and at least one baseline and one follow-up pelvic (pMRI). TOpCLASS classification, disease characteristics, and imaging indices were collected retrospectively at time periods corresponding with respective MRIs. RESULTS: We identified 100 patients with PFCD of which 96 were assigned TOpCLASS Classes 1 - 2c at baseline. Most patients (78.1%) started in Class 2b, but changes in classification were observed in 52.1% of all patients. Male sex (72.0%, 46.6%, 40.0%, p = 0.03) and prior perianal surgery (52.0% vs 44.6% vs 40.0%, p = 0.02) were more frequently observed in those with improved class. Baseline pMRI indices were not associated with changes in classification, however, greater improvements in mVAI, MODIFI-CD, and PEMPAC were seen among those who improved. Linear mixed effect modeling identified only male sex (-0.31, 95% CI -0.60 to -0.02) with improvement in class. CONCLUSION: The TOpCLASS classification highlights the dynamic nature of PFCD over time, however, our ability to predict transitions between classes remains limited and requires prospective assessment. Improvement in MRI index scores over time was associated with a transition to lower TOpCLASS classification.

2.
medRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352377

ABSTRACT

Background and Aims: Perianal fistulizing Crohn's disease (CD-PAF) is an aggressive phenotype of Crohn's disease (CD) defined by frequent relapses and disabling symptoms. A novel consensus classification system was recently outlined by Geldof et al. that seeks to unify disease severity with patient-centered goals but has not yet been validated. We aimed to apply this to a real-world cohort and identify factors that predict transition between classes over time. Methods: We identified all patients with CD-PAF and at least one baseline and one follow-up pelvic (pMRI). Geldof Classification, disease characteristics, and imaging indices were collected retrospectively at time periods corresponding with respective MRIs. Results: We identified 100 patients with CD-PAF of which 96 were assigned Geldof Classes 1 - 2c at baseline. Most patients (78.1%) started in Class 2b, but changes in classification were observed in 52.1% of all patients. Male sex (72.0%, 46.6%, 40.0%, p = 0.03) and prior perianal surgery (52.0% vs 44.6% vs 40.0%, p = 0.02) were more frequently observed in those with improved. Baseline pMRI indices were not associated with changes in classification, however, greater improvements in mVAI, MODIFI-CD, and PEMPAC were seen among those who improved. Linear mixed effect modeling identified only male sex (-0.31, 95% CI -0.60 to -0.02) with improvement in class. Conclusion: Geldof classification highlights the dynamic nature of CD-PAF over time, however, our ability to predict transitions between classes remains limited and requires prospective assessment. Improvement in MRI index scores over time was associated with a transition to lower Geldof classification.

3.
JCO Precis Oncol ; 8: e2300117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38207228

ABSTRACT

Greater collaboration needed to realize potential of molecular profiling initiatives for pediatric cancers.


Subject(s)
Neoplasms , Humans , Child , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine
4.
JAMA Netw Open ; 6(7): e2324977, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37505498

ABSTRACT

Importance: The development of oncology drugs is expensive and beset by a high attrition rate. Analysis of the costs and causes of translational failure may help to reduce attrition and permit the more appropriate use of resources to reduce mortality from cancer. Objective: To analyze the causes of failure and expenses incurred in clinical trials of novel oncology drugs, with the example of insulin-like growth factor-1 receptor (IGF-1R) inhibitors, none of which was approved for use in oncology practice. Design, Setting, and Participants: In this cross-sectional study, inhibitors of the IGF-1R and their clinical trials for use in oncology practice between January 1, 2000, and July 31, 2021, were identified by searching PubMed and ClinicalTrials.gov. A proprietary commercial database was interrogated to provide expenses incurred in these trials. If data were not available, estimates were made of expenses using mean values from the proprietary database. A search revealed studies of the effects of IGF-1R inhibitors in preclinical in vivo assays, permitting calculation of the percentage of tumor growth inhibition. Archival data on the clinical trials of IGF-1R inhibitors and proprietary estimates of their expenses were examined, together with an analysis of preclinical data on IGF-1R inhibitors obtained from the published literature. Main Outcomes and Measures: Expenses associated with research and development of IGF-1R inhibitors. Results: Sixteen inhibitors of IGF-1R studied in 183 clinical trials were found. None of the trials, in a wide range of tumor types, showed efficacy permitting drug approval. More than 12 000 patients entered trials of IGF-1R inhibitors in oncology indications in 2003 to 2021. These trials incurred aggregate research and development expenses estimated at between $1.6 billion and $2.3 billion. Analysis of the results of preclinical in vivo assays of IGF-1R inhibitors that supported subsequent clinical investigations showed mixed activity and protocols that poorly reflected the treatment of advanced metastatic tumors in humans. Conclusions and Relevance: Failed drug development in oncology incurs substantial expense. At an industry level, an estimated $50 billion to $60 billion is spent annually on failed oncology trials. Improved target validation and more appropriate preclinical models are required to reduce attrition, with more attention to decision-making before launching clinical trials. A more appropriate use of resources may better reduce cancer mortality.


Subject(s)
Insulin-Like Growth Factor I , Neoplasms , Humans , Cross-Sectional Studies , Insulin-Like Growth Factor I/antagonists & inhibitors , Neoplasms/drug therapy
5.
Nat Rev Drug Discov ; 21(12): 915-931, 2022 12.
Article in English | MEDLINE | ID: mdl-36195754

ABSTRACT

Successful drug discovery is like finding oases of safety and efficacy in chemical and biological deserts. Screens in disease models, and other decision tools used in drug research and development (R&D), point towards oases when they score therapeutic candidates in a way that correlates with clinical utility in humans. Otherwise, they probably lead in the wrong direction. This line of thought can be quantified by using decision theory, in which 'predictive validity' is the correlation coefficient between the output of a decision tool and clinical utility across therapeutic candidates. Analyses based on this approach reveal that the detectability of good candidates is extremely sensitive to predictive validity, because the deserts are big and oases small. Both history and decision theory suggest that predictive validity is under-managed in drug R&D, not least because it is so hard to measure before projects succeed or fail later in the process. This article explains the influence of predictive validity on R&D productivity and discusses methods to evaluate and improve it, with the aim of supporting the application of more effective decision tools and catalysing investment in their creation.


Subject(s)
Drug Discovery , Efficiency , Humans , Drug Discovery/methods
7.
Eur J Cancer ; 150: 95-98, 2021 06.
Article in English | MEDLINE | ID: mdl-33892410

ABSTRACT

Two recent policy documents by the European Union, 'Europe's Beating Cancer Plan' and its accompanying 'Conquering Cancer: Mission Possible' (CCMP), articulate broad policies aimed at reducing cancer mortality across Europe, for example, by promoting prevention and early detection. The focus for cancer treatment in these manifestos is the expansion of personalised cancer medicine (PCM). However, the CCMP document suggests that the uptake of PCM is "hampered by uncertainty about its outcomes". What are these outcomes and why this uncertainty? We address the limits of PCM in pathology-driven and pathology-agnostic PCM, briefly discussing the results of umbrella and basket trials. We suggest that the complexity, plasticity and genetic heterogeneity of advanced cancers will continue to thwart the impact of PCM, limiting it to specific pathologies, or rare subsets of them. Caution regarding the advancement of PCM is justified, and policymakers should be wary of the hype of lobbyists, who do not acknowledge the limits of PCM.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine , Antineoplastic Agents/adverse effects , Drug Resistance, Neoplasm , Europe , European Union , Genetic Heterogeneity , Genetic Predisposition to Disease , Humans , Molecular Targeted Therapy , Neoplasms/pathology , Patient Safety , Phenotype , Precision Medicine/adverse effects , Risk Assessment
8.
Lancet Oncol ; 21(6): e297, 2020 06.
Article in English | MEDLINE | ID: mdl-32502449
9.
ACS Omega ; 4(5): 8892-8906, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31459977

ABSTRACT

We describe our work to establish structure- and fragment-based drug discovery to identify small molecules that inhibit the anti-apoptotic activity of the proteins Mcl-1 and Bcl-2. This identified hit series of compounds, some of which were subsequently optimized to clinical candidates in trials for treating various cancers. Many protein constructs were designed to identify protein with suitable properties for different biophysical assays and structural methods. Fragment screening using ligand-observed NMR experiments identified several series of compounds for each protein. The series were assessed for their potential for subsequent optimization using 1H and 15N heteronuclear single-quantum correlation NMR, surface plasmon resonance, and isothermal titration calorimetry measurements to characterize and validate binding. Crystal structures could not be determined for the early hits, so NMR methods were developed to provide models of compound binding to guide compound optimization. For Mcl-1, a benzodioxane/benzoxazine series was optimized to a K d of 40 µM before a thienopyrimidine hit series was identified which subsequently led to the lead series from which the clinical candidate S 64315 (MIK 665) was identified. For Bcl-2, the fragment-derived series were difficult to progress, and a compound derived from a published tetrahydroquinone compound was taken forward as the hit from which the clinical candidate (S 55746) was obtained. For both the proteins, the work to establish a portfolio of assays gave confidence for identification of compounds suitable for optimization.

10.
Oncotarget ; 9(28): 20075-20088, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29732004

ABSTRACT

Escape from apoptosis is one of the major hallmarks of cancer cells. The B-cell Lymphoma 2 (BCL-2) gene family encodes pro-apoptotic and anti-apoptotic proteins that are key regulators of the apoptotic process. Overexpression of the pro-survival member BCL-2 is a well-established mechanism contributing to oncogenesis and chemoresistance in several cancers, including lymphoma and leukemia. Thus, BCL-2 has become an attractive target for therapeutic strategy in cancer, as demonstrated by the recent approval of ABT-199 (Venclexta™) in relapsed or refractory Chronic Lymphocytic Leukemia with 17p deletion. Here, we describe a novel orally bioavailable BCL-2 selective and potent inhibitor called S55746 (also known as BCL201). S55746 occupies the hydrophobic groove of BCL-2. Its selectivity profile demonstrates no significant binding to MCL-1, BFL-1 (BCL2A1/A1) and poor affinity for BCL-XL. Accordingly, S55746 has no cytotoxic activity on BCL-XL-dependent cells, such as platelets. In a panel of hematological cell lines, S55746 induces hallmarks of apoptosis including externalization of phosphatidylserine, caspase-3 activation and PARP cleavage. Ex vivo, S55746 induces apoptosis in the low nanomolar range in primary Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma patient samples. Finally, S55746 administered by oral route daily in mice demonstrated robust anti-tumor efficacy in two hematological xenograft models with no weight lost and no change in behavior. Taken together, these data demonstrate that S55746 is a novel, well-tolerated BH3-mimetic targeting selectively and potently the BCL-2 protein.

11.
J Perioper Pract ; 28(4): 99-100, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29611789

ABSTRACT

We present a case of an injury to the superficial branch of the radial nerve following unconscious radial artery cannulation in a 57-year-old gentleman for revision of lumbar spinal fusion. Nerve damage is a rare complication of this commonly used technique; whilst usually self-limiting, it can lead to a significant under-reported burden of morbidity on our patients. We discuss current norms of practice, questioning the safety of unconscious arterial cannulation, and suggest that, where possible, it should be performed in the conscious patient to minimise the risk of this rare complication.


Subject(s)
Catheterization, Peripheral/methods , Radial Artery/surgery , Radial Nerve/injuries , Humans , Male , Middle Aged
12.
Sci Data ; 4: 170170, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29160867

ABSTRACT

Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented.


Subject(s)
Models, Biological , Neoplasms , Cell Culture Techniques , Humans , Imaging, Three-Dimensional
13.
N Engl J Med ; 376(1): 96-7, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28052222
14.
Clin Immunol ; 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27989896

ABSTRACT

The thymus is important for the development of the immune system. However, aging leads to predictable involution of the thymus and immunodeficiency. These immunodeficiencies may be rectified with thymic rejuvenation. Atrophy of the thymus is governed by a complex interplay of molecular, cytokine and hormonal factors. Herein we review the interaction of these factors across age and how they may be targeted for thymic rejuvenation. We further discuss the growing pre-clinical evidence defining the necessary and sufficient contributions of the thymus to successful tolerance induction in transplantation.

15.
Nature ; 538(7626): 477-482, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27760111

ABSTRACT

Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1. Our mechanistic studies demonstrate that S63845 potently kills MCL1-dependent cancer cells, including multiple myeloma, leukaemia and lymphoma cells, by activating the BAX/BAK-dependent mitochondrial apoptotic pathway. In vivo, S63845 shows potent anti-tumour activity with an acceptable safety margin as a single agent in several cancers. Moreover, MCL1 inhibition, either alone or in combination with other anti-cancer drugs, proved effective against several solid cancer-derived cell lines. These results point towards MCL1 as a target for the treatment of a wide range of tumours.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Models, Biological , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Male , Mice , Models, Molecular , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Pyrimidines/administration & dosage , Thiophenes/administration & dosage , Xenograft Model Antitumor Assays , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
17.
Sci Rep ; 5: 17187, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26647838

ABSTRACT

Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.


Subject(s)
Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Animals , Biomarkers , Cell Line, Tumor , Gene Expression , Heterografts , Humans , Immunohistochemistry/methods , Mice , Oxygen/metabolism , Principal Component Analysis , Real-Time Polymerase Chain Reaction , Signal Transduction , Stress, Physiological , Tissue Array Analysis , Tissue Culture Techniques
18.
Biotechnol J ; 9(9): 1115-28, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25174503

ABSTRACT

Cancers are complex and heterogeneous pathological "organs" in a dynamic interplay with their host. Models of human cancer in vitro, used in cancer biology and drug discovery, are generally highly reductionist. These cancer models do not incorporate complexity or heterogeneity. This raises the question as to whether the cancer models' biochemical circuitry (not their genome) represents, with sufficient fidelity, a tumor in situ. Around 95% of new anticancer drugs eventually fail in clinical trial, despite robust indications of activity in existing in vitro pre-clinical models. Innovative models are required that better capture tumor biology. An important feature of all tissues, and tumors, is that cells grow in three dimensions. Advances in generating and characterizing simple and complex (with added stromal components) three-dimensional in vitro models (3D models) are reviewed in this article. The application of stirred bioreactors to permit both scale-up/scale-down of these cancer models and, importantly, methods to permit controlled changes in environment (pH, nutrients, and oxygen) are also described. The challenges of generating thin tumor slices, their utility, and potential advantages and disadvantages are discussed. These in vitro/ex vivo models represent a distinct move to capture the realities of tumor biology in situ, but significant characterization work still remains to be done in order to show that their biochemical circuitry accurately reflects that of a tumor.


Subject(s)
Cell Culture Techniques/methods , In Vitro Techniques/methods , Neoplasms/pathology , Animals , Bioreactors , Cell Biology , Humans , Models, Biological
19.
Mol Cancer Ther ; 12(9): 1749-62, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23804704

ABSTRACT

Aberrant activity of the receptor tyrosine kinases MET, AXL, and FGFR1/2/3 has been associated with tumor progression in a wide variety of human malignancies, notably in instances of primary or acquired resistance to existing or emerging anticancer therapies. This study describes the preclinical characterization of S49076, a novel, potent inhibitor of MET, AXL/MER, and FGFR1/2/3. S49076 potently blocked cellular phosphorylation of MET, AXL, and FGFRs and inhibited downstream signaling in vitro and in vivo. In cell models, S49076 inhibited the proliferation of MET- and FGFR2-dependent gastric cancer cells, blocked MET-driven migration of lung carcinoma cells, and inhibited colony formation of hepatocarcinoma cells expressing FGFR1/2 and AXL. In tumor xenograft models, a good pharmacokinetic/pharmacodynamic relationship for MET and FGFR2 inhibition following oral administration of S49076 was established and correlated well with impact on tumor growth. MET, AXL, and the FGFRs have all been implicated in resistance to VEGF/VEGFR inhibitors such as bevacizumab. Accordingly, combination of S49076 with bevacizumab in colon carcinoma xenograft models led to near total inhibition of tumor growth. Moreover, S49076 alone caused tumor growth arrest in bevacizumab-resistant tumors. On the basis of these preclinical studies showing a favorable and novel pharmacologic profile of S49076, a phase I study is currently underway in patients with advanced solid tumors. Mol Cancer Ther; 12(9); 1749-62. ©2013 AACR.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Indoles/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Thiazolidinediones/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Bevacizumab , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemistry , Mice , Mice, Inbred BALB C , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Thiazolidinediones/chemistry , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
20.
Nat Neurosci ; 15(4): 574-80, 2012 Feb 26.
Article in English | MEDLINE | ID: mdl-22366758

ABSTRACT

Transient global ischemia in rats induces delayed death of hippocampal CA1 neurons. Early events include caspase activation, cleavage of anti-death Bcl-2 family proteins and large mitochondrial channel activity. However, whether these events have a causal role in ischemia-induced neuronal death is unclear. We found that the Bcl-2 and Bcl-x(L) inhibitor ABT-737, which enhances death of tumor cells, protected rats against neuronal death in a clinically relevant model of brain ischemia. Bcl-x(L) is prominently expressed in adult neurons and can be cleaved by caspases to generate a pro-death fragment, ΔN-Bcl-x(L). We found that ABT-737 administered before or after ischemia inhibited ΔN-Bcl-x(L)-induced mitochondrial channel activity and neuronal death. To establish a causal role for ΔN-Bcl-x(L), we generated knock-in mice expressing a caspase-resistant form of Bcl-x(L). The knock-in mice exhibited markedly reduced mitochondrial channel activity and reduced vulnerability to ischemia-induced neuronal death. These findings suggest that truncated Bcl-x(L) could be a potentially important therapeutic target in ischemic brain injury.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/pathology , Neurons/metabolism , Neurons/pathology , bcl-X Protein/physiology , Animals , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Brain Ischemia/prevention & control , Cell Death/drug effects , Cell Death/genetics , Cells, Cultured , Female , Gene Knock-In Techniques , Male , Mice , Mice, Knockout , Neurons/drug effects , Nitrophenols/pharmacology , Nitrophenols/therapeutic use , Organ Culture Techniques , Piperazines/pharmacology , Piperazines/therapeutic use , Rats , Rats, Sprague-Dawley , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , bcl-X Protein/biosynthesis , bcl-X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...