Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cochrane Database Syst Rev ; 7: CD007859, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30064155

ABSTRACT

BACKGROUND: Initial arch wires are the first arch wires to be inserted into the fixed appliance at the beginning of orthodontic treatment and are used mainly for the alignment of teeth by correcting crowding and rotations. With a number of different types of orthodontic arch wires available for initial tooth alignment, it is important to understand which wire is most efficient, as well as which wires cause least amount of root resorption and pain during the initial aligning stage of treatment. This is an update of the review entitledInitial arch wires for alignment of crooked teeth with fixed orthodontic braces, which was first published in 2010. OBJECTIVES: To assess the effects of initial arch wires for the alignment of teeth with fixed orthodontic braces, in terms of the rate of tooth alignment, amount of root resorption accompanying tooth movement, and intensity of pain experienced by patients during the initial alignment stage of treatment. SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 5 October 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 9), MEDLINE Ovid (1946 to 5 October 2017), and Embase Ovid (1980 to 5 October 2017. The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of initial arch wires to align teeth with fixed orthodontic braces. We included only studies involving participants with upper or lower, or both, full arch fixed orthodontic appliances. DATA COLLECTION AND ANALYSIS: Two review authors were responsible for study selection, 'Risk of bias' assessment and data extraction. We resolved disagreements by discussion between the review authors. We contacted corresponding authors of included studies to obtain missing information. We assessed the quality of the evidence for each comparison and outcome as high, moderate, low or very low, according to GRADE criteria. MAIN RESULTS: For this update, we found three new RCTs (228 participants), bringing the total to 12 RCTs with 799 participants. We judged three studies to be at high risk of bias, and three to be at low risk of bias; six were unclear. None of the studies reported the adverse outcome of root resorption. The review assessed six comparisons.1. Multistrand stainless steel versus superelastic nickel-titanium (NiTi) arch wires. There were five studies in this group and it was appropriate to undertake a meta-analysis of two of them. There is insufficient evidence from these studies to determine whether there is a difference in rate of alignment between multistrand stainless steel and superelastic NiTi arch wires (mean difference (MD) -7.5 mm per month, 95% confidence interval (CI) -26.27 to 11.27; 1 study, 48 participants; low-quality evidence). The findings for pain at day 1 as measured on a 100 mm visual analogue scale suggested that there was no meaningful difference between the interventions (MD -2.68 mm, 95% CI -6.75 to 1.38; 2 studies, 127 participants; moderate-quality evidence).2. Multistrand stainless steel versus thermoelastic NiTi arch wires. There were two studies in this group, but it was not appropriate to undertake a meta-analysis of the data. There is insufficient evidence from the studies to determine whether there is a difference in rate of alignment between multistrand stainless steel and thermoelastic NiTi arch wires (low-quality evidence). Pain was not measured.3. Conventional NiTi versus superelastic NiTi arch wires. There were three studies in this group, but it was not appropriate to undertake a meta-analysis of the data. There is insufficient evidence from these studies to determine whether there is any difference between conventional and superelastic NiTi arch wires with regard to either alignment or pain (low- to very low-quality evidence).4. Conventional NiTi versus thermoelastic NiTi arch wires. There were two studies in this group, but it was not appropriate to undertake a meta-analysis of the data. There is insufficient evidence from these studies to determine whether there is a difference in alignment between conventional and thermoelastic NiTi arch wires (low-quality evidence). Pain was not measured.5. Single-strand superelastic NiTi versus coaxial superelastic NiTi arch wires. There was only one study (24 participants) in this group. There is moderate-quality evidence that coaxial superelastic NiTi can produce greater tooth movement over 12 weeks (MD -6.76 mm, 95% CI -7.98 to -5.55). Pain was not measured.6. Superelastic NiTi versus thermoelastic NiTi arch wires. There were three studies in this group, but it was not appropriate to undertake a meta-analysis of the data. There is insufficient evidence from these studies to determine whether there is a difference in alignment or pain between superelastic and thermoelastic NiTi arch wires (low-quality evidence). AUTHORS' CONCLUSIONS: Moderate-quality evidence shows that arch wires of coaxial superelastic nickel-titanium (NiTi) can produce greater tooth movement over 12 weeks than arch wires made of single-strand superelastic NiTi. Moderate-quality evidence also suggests there may be no difference in pain at day 1 between multistrand stainless steel arch wires and superelastic NiTi arch wires. Other than these findings, there is insufficient evidence to determine whether any particular arch wire material is superior to any other in terms of alignment rate, time to alignment, pain and root resorption.


Subject(s)
Dental Alloys , Orthodontic Brackets/standards , Orthodontic Wires/standards , Tooth Movement Techniques/instrumentation , Alloys , Humans , Orthodontic Wires/adverse effects , Randomized Controlled Trials as Topic , Root Resorption/etiology , Tooth Movement Techniques/adverse effects , Toothache/etiology
2.
Cochrane Database Syst Rev ; 4: CD002282, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29630138

ABSTRACT

BACKGROUND: Bonding of orthodontic brackets to teeth is important to enable effective and efficient treatment with fixed appliances. The problem is bracket failure during treatment which increases operator chairside time and lengthens treatment time. A prolonged treatment is likely to increase the oral health risks of orthodontic treatment with fixed appliances one of which is irreversible enamel decalcification. This is an update of the Cochrane Review first published in 2003. A new full search was conducted on 26 September 2017 but no new studies were identified. We have only updated the search methods section in this new version. The conclusions of this Cochrane Review remain the same. OBJECTIVES: To evaluate the effects of different orthodontic adhesives for bonding. SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 26 September 2017), the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 8) in the Cochrane Library (searched 26 September 2017), MEDLINE Ovid (1946 to 26 September 2017), and Embase Ovid (1980 to 26 September 2017). The US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA: Trials were selected if they met the following criteria: randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing two different adhesive groups. Participants were patients with fixed orthodontic appliances. The interventions were adhesives that bonded stainless steel brackets to all teeth except the molars. The primary outcome was debond or bracket failure. DATA COLLECTION AND ANALYSIS: Data were recorded on decalcification as a secondary outcome, if present. Information regarding methods, participants, interventions, outcome measures and results were extracted in duplicate by pairs of review authors. Since the data were not presented in a form that was amenable to meta-analysis, the results of the review are presented in narrative form only. MAIN RESULTS: Three trials satisfied the inclusion criteria. A chemical cured composite was compared with a light cured composite (one trial), a conventional glass ionomer cement (one trial) and a polyacid-modified resin composite (compomer) (one trial). The quality of the trial reports was generally poor. AUTHORS' CONCLUSIONS: There is no clear evidence on which to make a clinical decision of the type of orthodontic adhesive to use.


Subject(s)
Dental Bonding , Dental Cements , Orthodontic Brackets , Compomers , Decalcification, Pathologic , Glass Ionomer Cements , Humans , Randomized Controlled Trials as Topic
3.
Cochrane Database Syst Rev ; 2: CD008236, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230910

ABSTRACT

BACKGROUND: Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. The success of a fixed appliance depends partly on the metal attachments (brackets and bands) being glued to the teeth so that they do not become detached during treatment. Brackets (metal squares) are usually attached to teeth other than molars, where bands (metal rings that go round each tooth) are more commonly used. Orthodontic tubes (stainless steel tubes that allow wires to pass through them), are typically welded to bands but they may also be glued directly (bonded) to molars. Failure of brackets, bands and bonded molar tubes slows down the progress of treatment with a fixed appliance. It can also be costly in terms of clinical time, materials and time lost from education/work for the patient. This is an update of the Cochrane review first published in 2011. A new full search was conducted on 15 February 2017 but no new studies were identified. We have only updated the search methods section in this new version. The conclusions of this Cochrane review remain the same. OBJECTIVES: To evaluate the effectiveness of the adhesives used to attach bonded molar tubes, and the relative effectiveness of the adhesives used to attach bonded molar tubes versus adhesives used to attach bands, during fixed appliance treatment, in terms of: (1) how often the tubes (or bands) come off during treatment; and (2) whether they protect the bonded (or banded) teeth against decay. SEARCH METHODS: The following electronic databases were searched: Cochrane Oral Health's Trials Register (to 15 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 1) in the Cochrane Library (searched 15 February 2017), MEDLINE Ovid (1946 to 15 February 2017), and Embase Ovid (1980 to 15 February 2017). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA: Randomised controlled trials of participants with full arch fixed orthodontic appliance(s) with molar tubes, bonded to first or second permanent molars. Trials which compared any type of adhesive used to bond molar tubes (stainless steel or titanium) with any other adhesive, were included.Trials were also included where:(1) a tube was bonded to a molar tooth on one side of an arch and a band cemented to the same tooth type on the opposite side of the same arch;(2) molar tubes had been allocated to one tooth type in one patient group and molar bands to the same tooth type in another patient group. DATA COLLECTION AND ANALYSIS: The selection of papers, decision about eligibility and data extraction were carried out independently and in duplicate without blinding to the authors, adhesives used or results obtained. All disagreements were resolved by discussion. MAIN RESULTS: Two trials (n = 190), at low risk of bias, were included in the review and both presented data on first time failure at the tooth level. Pooling of the data showed a statistically significant difference in favour of molar bands, with a hazard ratio of 2.92 (95% confidence intervals (CI) 1.80 to 4.72). No statistically significant heterogeneity was shown between the two studies. Data on first time failure at the patient level were also available and showed statistically different difference in favour of molar bands (risk ratio 2.30; 95% CI 1.56 to 3.41) (risk of event for molar tubes = 57%; risk of event for molar bands 25%).One trial presented data on decalcification again showing a statistically significant difference in favour of molar bands. No other adverse events identified. AUTHORS' CONCLUSIONS: From the two well-designed and low risk of bias trials included in this review it was shown that the failure of molar tubes bonded with either a chemically-cured or light-cured adhesive was considerably higher than that of molar bands cemented with glass ionomer cement. One trial indicated that there was less decalcification with molar bands cemented with glass ionomer cement than with bonded molar tubes cemented with a light-cured adhesive. However, given there are limited data for this outcome, further evidence is required to draw more robust conclusions.


Subject(s)
Dental Cements/standards , Light-Curing of Dental Adhesives , Orthodontic Brackets , Self-Curing of Dental Resins , Dental Restoration Failure , Humans , Molar , Randomized Controlled Trials as Topic
4.
Cochrane Database Syst Rev ; 10: CD004485, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27779317

ABSTRACT

BACKGROUND: Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. OBJECTIVES: To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. SEARCH METHODS: The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA: Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. DATA COLLECTION AND ANALYSIS: All review authors were involved in study selection, validity assessment and data extraction without blinding to the authors, adhesives used or results obtained. All disagreements were resolved by discussion. MAIN RESULTS: Five RCTs and three CCTs were identified as meeting the review's inclusion criteria. All the included trials were of split-mouth design. Four trials compared chemically cured zinc phosphate and chemically cured glass ionomer; three trials compared chemically cured glass ionomer cement with light cured compomer; one trial compared chemically cured glass ionomer with a chemically cured glass phosphonate. Data analysis was often inappropriate within the studies meeting the inclusion criteria. AUTHORS' CONCLUSIONS: There is insufficient high quality evidence with regard to the most effective adhesive for attaching orthodontic bands to molar teeth. Further RCTs are required.


Subject(s)
Adhesives/standards , Dental Caries/prevention & control , Dental Cements/standards , Orthodontic Brackets , Orthodontics/standards , Adolescent , Clinical Trials as Topic , Dental Bonding , Female , Glass Ionomer Cements/standards , Humans , Male , Molar , Resin Cements/standards , Young Adult , Zinc Phosphate Cement/standards
5.
Cochrane Database Syst Rev ; (4): CD007859, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23633347

ABSTRACT

BACKGROUND: Initial arch wires are the first arch wires to be inserted into the fixed appliance at the beginning of orthodontic treatment and are used mainly for the alignment of teeth by correcting crowding and rotations. With a number of different types of orthodontic arch wires available for initial tooth alignment, it is important to understand which wire is most efficient, as well as which wires cause the least amount of root resorption and pain during the initial aligning stage of treatment. This is an update of the review 'Initial arch wires for alignment of crooked teeth with fixed orthodontic braces' first published in the Cochrane Database of Systematic Reviews 2010, Issue 4. OBJECTIVES: To assess the effects of initial arch wires for alignment of teeth with fixed orthodontic braces in relation to alignment speed, root resorption and pain intensity. SEARCH METHODS: We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 2 August 2012), CENTRAL (The Cochrane Library 2012, Issue 7), MEDLINE via OVID (1950 to 2 August 2012) and EMBASE via OVID (1980 to 2 August 2012). We also searched the reference lists of relevant articles. There was no restriction with regard to publication status or language of publication. We contacted all authors of included studies to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of initial arch wires to align teeth with fixed orthodontic braces. Only studies involving participants with upper and/or lower full arch fixed orthodontic appliances were included. DATA COLLECTION AND ANALYSIS: Two review authors were responsible for study selection, validity assessment and data extraction. All disagreements were resolved by discussion amongst the review team. Corresponding authors of included studies were contacted to obtain missing information. MAIN RESULTS: Nine RCTs with 571 participants were included in this review. All trials were at high risk of bias and a number of methodological limitations were identified. All trials had at least one potentially confounding factor (such as bracket type, slot size, ligation method, extraction of teeth) which is likely to have influenced the outcome and was not controlled in the trial. None of the trials reported the important adverse outcome of root resorption.Three groups of comparisons were made.(1) Multistrand stainless steel initial arch wires compared to superelastic nickel titanium (NiTi) initial arch wires. There were four trials in this group, with different comparisons and outcomes reported at different times. No meta-analysis was possible. There is insufficient evidence from these trials to determine whether or not there is a difference in either rate of alignment or pain between stainless steel and NiTi initial arch wires.(2) Conventional (stabilised) NiTi initial arch wires compared to superelastic NiTi initial arch wires. There were two trials in this group, one reporting the outcome of alignment over 6 months and the other reporting pain over 1 week. There is insufficient evidence from these trials to determine whether or not there is any difference between conventional (stabilised) and superelastic NiTi initial arch wires with regard to either alignment or pain.(3) Single-strand superelastic NiTi initial arch wires compared to other NiTi (coaxial, copper NiTi (CuNiTi) or thermoelastic) initial arch wires. The three trials in this comparison each compared a different product against single-strand superelastic NiTi. There is very weak unreliable evidence, based on one very small study (n = 24) at high risk of bias, that coaxial superelastic NiTi may produce greater tooth movement over 12 weeks, but no information on associated pain or root resorption. This result should be interpreted with caution until further research evidence is available. There is insufficient evidence to determine whether or not there is a difference between either thermoelastic or CuNiTi and superelastic NiTi initial arch wires. AUTHORS' CONCLUSIONS: There is no reliable evidence from the trials included in this review that any specific initial arch wire material is better or worse than another with regard to speed of alignment or pain. There is no evidence at all about the effect of initial arch wire materials on the important adverse effect of root resorption. Further well-designed and conducted, adequately-powered, RCTs are required to determine whether the performance of initial arch wire materials as demonstrated in the laboratory, makes a clinically important difference to the alignment of teeth in the initial stage of orthodontic treatment in patients.


Subject(s)
Orthodontic Brackets/standards , Orthodontic Wires/standards , Tooth Movement Techniques/instrumentation , Dental Alloys , Humans , Orthodontic Wires/adverse effects , Randomized Controlled Trials as Topic , Root Resorption/etiology , Tooth Movement Techniques/adverse effects , Toothache/etiology
6.
Cochrane Database Syst Rev ; (6): CD008236, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21678375

ABSTRACT

BACKGROUND: Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. The success of a fixed appliance depends partly on the metal attachments (brackets and bands) being glued to the teeth so that they do not become detached during treatment. Brackets (metal squares) are usually attached to teeth other than molars, where bands (metal rings that go round each tooth) are more commonly used. Orthodontic tubes (stainless steel tubes that allow wires to pass through them), are typically welded to bands but they may also be glued directly (bonded) to molars. Failure of brackets, bands and bonded molar tubes slows down the progress of treatment with a fixed appliance. It can also be costly in terms of clinical time, materials and time lost from education/work for the patient. OBJECTIVES: To evaluate the effectiveness of the adhesives used to attach bonded molar tubes, and the relative effectiveness of the adhesives used to attach bonded molar tubes versus adhesives used to attach bands, during fixed appliance treatment, in terms of: (1) how often the tubes (or bands) come off during treatment; and (2) whether they protect the bonded (or banded) teeth against decay. SEARCH STRATEGY: The following electronic databases were searched: the Cochrane Oral Health Group Trials Register (to 16 December 2010), the Cochrane Central Register of Controlled Clinical Trials (CENTRAL) (The Cochrane Library 2010, Issue 3), MEDLINE via OVID (1950 to 16 December 2010) and EMBASE via OVID (1980 to 16 December 2010). There were no restrictions regarding language or date of publication. SELECTION CRITERIA: Randomised controlled trials of participants with full arch fixed orthodontic appliance(s) with molar tubes, bonded to first or second permanent molars. Trials which compared any type of adhesive used to bond molar tubes (stainless steel or titanium) with any other adhesive, are included.Trials are also included where:(1) a tube is bonded to a molar tooth on one side of an arch and a band cemented to the same tooth type on the opposite side of the same arch; (2) molar tubes have been allocated to one tooth type in one patient group and molar bands to the same tooth type in another patient group. DATA COLLECTION AND ANALYSIS: The selection of papers, decision about eligibility and data extraction were carried out independently and in duplicate without blinding to the authors, adhesives used or results obtained. All disagreements were resolved by discussion. MAIN RESULTS: Two trials (n = 190), at low risk of bias, were included in the review and both presented data on first time failure at the tooth level. Pooling of the data showed a statistically significant difference in favour of molar bands, with a hazard ratio of 2.92 (95% confidence intervals (CI) 1.80 to 4.72). No statistically significant heterogeneity was shown between the two studies. Data on first time failure at the patient level were also available and showed statistically different difference in favour of molar bands (risk ratio 2.30; 95% CI 1.56 to 3.41) (risk of event for molar tubes = 57%; risk of event for molar bands 25%).One trial presented data on decalcification again showing a statistically significant difference in favour of molar bands. No other adverse events identified. AUTHORS' CONCLUSIONS: From the two well-designed and low risk of bias trials included in this review it was shown that the failure of molar tubes bonded with either a chemically-cured or light-cured adhesive was considerably higher than that of molar bands cemented with glass ionomer cement. One trial indicated that there was less decalcification with molar bands cemented with glass ionomer cement than with bonded molar tubes cemented with a light-cured adhesive. However, given there are limited data for this outcome, further evidence is required to draw more robust conclusions.


Subject(s)
Dental Cements/standards , Light-Curing of Dental Adhesives , Orthodontic Brackets , Self-Curing of Dental Resins , Dental Restoration Failure , Humans , Molar , Randomized Controlled Trials as Topic
7.
Cochrane Database Syst Rev ; (4): CD007859, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20393961

ABSTRACT

BACKGROUND: The initial arch wire is the first arch wire to be inserted into the fixed appliance at the beginning of orthodontic treatment and is used mainly for correcting crowding and rotations of teeth. With a number of orthodontic arch wires available for initial tooth alignment, it is important to understand which wire is most efficient, as well as which wires cause the least amount of root resorption and pain during the initial aligning stage of treatment. OBJECTIVES: To identify and assess the evidence for the effects of initial arch wires for alignment of teeth with fixed orthodontic braces in relation to alignment speed, root resorption and pain intensity. SEARCH STRATEGY: We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (30th November 2009), CENTRAL (The Cochrane Library 2009, Issue 4), MEDLINE (1950 to 30th November 2009) and EMBASE (1980 to 30th November 2009). Reference lists of articles were also searched. There was no restriction with regard to publication status or language of publication. We contacted all authors of included studies to identify additional studies. SELECTION CRITERIA: Randomised controlled trials (RCTs) of initial arch wires to align crooked teeth with fixed orthodontic braces were selected. Only studies involving patients with upper and/or lower full arch fixed orthodontic appliances were included. DATA COLLECTION AND ANALYSIS: Two review authors were responsible for study selection, validity assessment and data extraction. All disagreements were resolved by discussion amongst the review team. Corresponding authors of included studies were contacted to obtain missing information. MAIN RESULTS: Seven RCTs, with 517 participants, provided data for this review. Among them, five trials investigated the speed of initial tooth alignment comparing: 0.016 inch ion-implanted A-NiTi wire versus 0.016 inch A-NiTi versus 0.0175 multistrand stainless steel wire; 0.016x0.022 inch medium force active M-NiTi wire versus 0.016x0.022 inch graded force active M-NiTi wire versus 0.0155 inch multistrand stainless steel wire; 0.016 inch superelastic NiTi wire versus 0.016 inch NiTi wire; 0.014 inch superelastic NiTi wire versus 0.0155 inch multistrand stainless steel wire; 0.016 inch CuNiTi wire versus 0.016 inch NiTi wire. The other two studies investigated pain intensity experienced by patients during the initial stage of treatment comparing: 0.014 inch superelastic NiTi wire versus 0.014 inch NiTi wire; 0.014 inch superelastic NiTi wire versus 0.015 inch multistrand stainless steel wire. Data analyses were often inappropriate within the included studies. AUTHORS' CONCLUSIONS: There is some evidence to suggest that there is no difference between the speed of tooth alignment or pain experienced by patients when using one initial aligning arch wire over another. However, in view of the general poor quality of the including trials, these results should be viewed with caution. Further RCTs are required.


Subject(s)
Dental Alloys , Orthodontic Brackets/standards , Orthodontic Wires/standards , Tooth Movement Techniques/instrumentation , Humans , Orthodontic Wires/adverse effects , Randomized Controlled Trials as Topic , Root Resorption/etiology , Tooth Movement Techniques/adverse effects , Toothache/etiology
8.
Angle Orthod ; 79(1): 193-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19123702

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of adhesives used to attach bands to teeth during fixed appliance treatment. MATERIAL AND METHODS: Electronic databases, conference proceedings and the Internet were searched. There was no restriction with regard to publication status or language of publication. Randomized controlled trials (RCTs) and controlled clinical trials (CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors were involved in study selection, validity assessment, and data extraction. Disagreements were resolved by discussion. Comparisons were made between the main types of adhesive. RESULTS: Five RCTs and three CCTs were identified, all of split-mouth design. Four trials compared chemically cured zinc phosphate and chemically cured glass ionomer; three trials compared chemically cured glass ionomer cement with light-cured compomer; and one trial compared chemically cured glass ionomer with a chemically cured glass polyphosphonate. Data analysis was often inappropriate within the studies. Meta-analysis was not feasible. CONCLUSIONS: There is insufficient high-quality evidence with regard to the most effective adhesive for attaching orthodontic bands to molar teeth. Further RCTs are required.


Subject(s)
Dental Cements , Light-Curing of Dental Adhesives , Orthodontic Wires , Self-Curing of Dental Resins , Compomers , Controlled Clinical Trials as Topic , Glass Ionomer Cements , Humans , Molar , Organophosphates , Zinc Phosphate Cement
SELECTION OF CITATIONS
SEARCH DETAIL
...