Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6614): eabo2196, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36007009

ABSTRACT

The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.

2.
Science ; 377(6614): 1513-1519, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36007094

ABSTRACT

The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We found that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multistage cooling of a thick magma body.

3.
Science ; 374(6568): 711-717, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34618548

ABSTRACT

Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing. The fan has outcrop faces, which were invisible from orbit, that record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition from sustained hydrologic activity in a persistent lake environment to highly energetic short-duration fluvial flows.

4.
Sci Rep ; 10(1): 8163, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32424216

ABSTRACT

Precambrian cellular remains frequently have simple morphologies, micrometric dimensions and are poorly preserved, imposing severe analytical and interpretational challenges, especially for irrefutable attestations of biogenicity. The 1.88 Ga Gunflint biota is a Precambrian microfossil assemblage with different types and qualities of preservation across its numerous geological localities and provides important insights into the Proterozoic biosphere and taphonomic processes. Here we use synchrotron-based ptychographic X-ray computed tomography to investigate well-preserved carbonaceous microfossils from the Schreiber Beach locality as well as poorly-preserved, iron-replaced fossil filaments from the Mink Mountain locality, Gunflint Formation. 3D nanoscale imaging with contrast based on electron density allowed us to assess the morphology and carbonaceous composition of different specimens and identify the minerals associated with their preservation based on retrieved mass densities. In the Mink Mountain filaments, the identification of mature kerogen and maghemite rather than the ubiquitously described hematite indicates an influence from biogenic organics on the local maturation of iron oxides through diagenesis. This non-destructive 3D approach to microfossil composition at the nanoscale within their geological context represents a powerful approach to assess the taphonomy and biogenicity of challenging or poorly preserved traces of early microbial life, and may be applied effectively to extraterrestrial samples returned from upcoming space missions.

5.
Astrobiology ; 19(4): 553-578, 2019 04.
Article in English | MEDLINE | ID: mdl-30653331

ABSTRACT

The Dallol volcano and its associated hydrothermal field are located in a remote area of the northern Danakil Depression in Ethiopia, a region only recently appraised after decades of inaccessibility due to severe political instability and the absence of infrastructure. The region is notable for hosting environments at the very edge of natural physical-chemical extremities. It is surrounded by a wide, hyperarid salt plain and is one of the hottest (average annual temperatureDallol: 36-38°C) and most acidic natural systems (pHDallol ≈0) on Earth. Spectacular geomorphologies and mineral deposits produced by supersaturated hydrothermal waters and brines are the result of complex interactions between active and inactive hydrothermal alteration of the bedrock, sulfuric hot springs and pools, fumaroles and geysers, and recrystallization processes driven by hydrothermal waters, degassing, and rapid evaporation. The study of planetary field analog environments plays a crucial role in characterizing the physical and chemical boundaries within which life can exist on Earth and other planets. It is essential for the definition and assessment of the conditions of habitability on other planets, including the possibility for biosignature preservation and in situ testing of technologies for life detection. The Dallol area represents an excellent Mars analog environment given that the active volcanic environment, the associated diffuse hydrothermalism and hydrothermal alteration, and the vast acidic sulfate deposits are reminiscent of past hydrothermal activity on Mars. The work presented in this paper is an overview of the Dallol volcanic area and its hydrothermal field that integrates previous literature with observations and results obtained from field surveys and monitoring coupled with sample characterization. In so doing, we highlight its exceptional potential as a planetary field analog as well as a site for future astrobiological and exploration programs.


Subject(s)
Earth, Planet , Extraterrestrial Environment , Acids/chemistry , Climate , Ethiopia , Exobiology , Gases/analysis , Geography , Hot Springs/microbiology , Mars , Minerals/chemistry , Salts/chemistry , Satellite Communications , Temperature
6.
Astrobiology ; 18(3): 259-293, 2018 03.
Article in English | MEDLINE | ID: mdl-29489386

ABSTRACT

Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5-4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5-3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life-Hadean environment-Mineral surface reactions-Hydrothermal fluids-Archean volcanic sediments. Astrobiology 18, 259-293.


Subject(s)
Geologic Sediments/chemistry , Origin of Life , Temperature , Water , Earth, Planet , Silicates , Volcanic Eruptions
SELECTION OF CITATIONS
SEARCH DETAIL
...