Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(6): e65604, 2013.
Article in English | MEDLINE | ID: mdl-23776511

ABSTRACT

We explored the relationship between relaxed selection, oxidative stress, and spontaneous mutation in a set of mutation-accumulation (MA) lines of the nematode Caenorhabditis elegans and in their common ancestor. We measured steady-state levels of free radicals and oxidatively damaged guanosine nucleosides in the somatic tissues of five MA lines for which nuclear genome base substitution and GC-TA transversion frequencies are known. The two markers of oxidative stress are highly correlated and are elevated in the MA lines relative to the ancestor; point estimates of the per-generation rate of mutational decay (ΔM) of these measures of oxidative stress are similar to those reported for fitness-related traits. Conversely, there is no significant relationship between either marker of oxidative stress and the per-generation frequencies of base substitution or GC-TA transversion. Although these results provide no direct evidence for a causative relationship between oxidative damage and base substitution mutations, to the extent that oxidative damage may be weakly mutagenic in the germline, the case for condition-dependent mutation is advanced.


Subject(s)
Caenorhabditis elegans/metabolism , Animals , Biological Evolution , Mutation , Oxidative Stress/physiology , Selection, Genetic
2.
Mitochondrion ; 13(1): 44-51, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23269324

ABSTRACT

Mitochondrial functioning and morphology are known to be connected through cycles of organelle fusion and fission that depend upon the mitochondrial membrane potential (ΔΨM); however, we lack an understanding of the features and dynamics of natural mitochondrial populations. Using data from our recent study of univariate mitochondrial phenotypic variation in Caenorhabditis briggsae nematodes, we analyzed patterns of phenotypic correlation for 24 mitochondrial traits. Our findings support a role for ΔΨM in shaping mitochondrial dynamics, but no role for mitochondrial ROS. Further, our study suggests a novel model of mitochondrial population dynamics dependent upon cellular environmental context and with implications for mitochondrial genome integrity.


Subject(s)
Caenorhabditis/physiology , Caenorhabditis/ultrastructure , Mitochondria/physiology , Mitochondria/ultrastructure , Mitochondrial Dynamics , Animals , Genetic Variation , Reactive Oxygen Species/metabolism
3.
PLoS One ; 7(8): e43837, 2012.
Article in English | MEDLINE | ID: mdl-22952781

ABSTRACT

We have analyzed natural variation in mitochondrial form and function among a set of Caenorhabditis briggsae isolates known to harbor mitochondrial DNA structural variation in the form of a heteroplasmic nad5 gene deletion (nad5Δ) that correlates negatively with organismal fitness. We performed in vivo quantification of 24 mitochondrial phenotypes including reactive oxygen species level, membrane potential, and aspects of organelle morphology, and observed significant among-isolate variation in 18 traits. Although several mitochondrial phenotypes were non-linearly associated with nad5Δ levels, most of the among-isolate phenotypic variation could be accounted for by phylogeographic clade membership. In particular, isolate-specific mitochondrial membrane potential was an excellent predictor of clade membership. We interpret this result in light of recent evidence for local adaptation to temperature in C. briggsae. Analysis of mitochondrial-nuclear hybrid strains provided support for both mtDNA and nuclear genetic variation as drivers of natural mitochondrial phenotype variation. This study demonstrates that multicellular eukaryotic species are capable of extensive natural variation in organellar phenotypes and highlights the potential of integrating evolutionary and cell biology perspectives.


Subject(s)
Caenorhabditis/cytology , Caenorhabditis/genetics , Genetic Variation , Mitochondria/genetics , Animals , Caenorhabditis/metabolism , DNA, Mitochondrial/genetics , Electron Transport Chain Complex Proteins/genetics , Hybridization, Genetic , Male , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Phenotype , Reactive Oxygen Species/metabolism
4.
BMC Evol Biol ; 11: 11, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21226948

ABSTRACT

BACKGROUND: Mutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial ND5 deletion recently discovered to segregate among wild populations of the soil nematode, Caenorhabditis briggsae. The normal product of ND5 is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism. RESULTS: We quantified significant variation among C. briggsae isolates for all phenotypes measured, only some of which was statistically associated with isolate-specific ND5 deletion frequency. We found that fecundity-related traits and pharyngeal pumping rate were strongly inversely related to ND5 deletion level and that C. briggsae isolates with high ND5 deletion levels experienced a tradeoff between early fecundity and lifespan. Conversely, oxidative stress resistance was only weakly associated with ND5 deletion level while ATP content was unrelated to deletion level. Finally, mean levels of reactive oxygen species measured in vivo showed a significant non-linear relationship with ND5 deletion level, a pattern that may be driven by among-isolate variation in antioxidant or other compensatory mechanisms. CONCLUSIONS: Our findings suggest that the ND5 deletion may adversely affect fitness and mitochondrial functioning while promoting aging in natural populations, and help to further establish this species as a useful model for explicit tests of hypotheses in aging biology and mitochondrial genetics.


Subject(s)
Caenorhabditis/physiology , DNA, Mitochondrial/genetics , Gene Deletion , Helminth Proteins/genetics , Aging/genetics , Animals , Caenorhabditis/classification , Caenorhabditis/genetics , Genetic Variation , Molecular Sequence Data , Phenotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...