Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037870

ABSTRACT

Engineered hemoproteins can selectively incorporate nitrogen from nitrene precursors like hydroxylamine, O-substituted hydroxylamines, and organic azides into organic molecules. Although iron-nitrenoids are often invoked as the reactive intermediates in these reactions, their innate reactivity and transient nature have made their characterization challenging. Here we characterize an iron-nitrosyl intermediate generated from NH2OH within a protoglobin active site that can undergo nitrogen-group transfer catalysis, using UV-vis, electron paramagnetic resonance (EPR) spectroscopy, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) techniques. The mechanistic insights gained led to the discovery of aminating reagents─nitrite (NO2-), nitric oxide (NO), and nitroxyl (HNO)─that are new to both nature and synthetic chemistry. Based on the findings, we propose a catalytic cycle for C-H amination inspired by the nitrite reductase pathway. This study highlights the potential of engineered hemoproteins to access natural nitrogen sources for sustainable chemical synthesis and offers a new perspective on the use of biological nitrogen cycle intermediates in biocatalysis.

2.
medRxiv ; 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35734090

ABSTRACT

Objectives: To compare the effectiveness of a primary COVID-19 vaccine series plus a booster dose with a primary series alone for the prevention of Omicron variant COVID-19 hospitalization. Design: Multicenter observational case-control study using the test-negative design to evaluate vaccine effectiveness (VE). Setting: Twenty-one hospitals in the United States (US). Participants: 3,181 adults hospitalized with an acute respiratory illness between December 26, 2021 and April 30, 2022, a period of SARS-CoV-2 Omicron variant (BA.1, BA.2) predominance. Participants included 1,572 (49%) case-patients with laboratory confirmed COVID-19 and 1,609 (51%) control patients who tested negative for SARS-CoV-2. Median age was 64 years, 48% were female, and 21% were immunocompromised; 798 (25%) were vaccinated with a primary series plus booster, 1,326 (42%) were vaccinated with a primary series alone, and 1,057 (33%) were unvaccinated. Main Outcome Measures: VE against COVID-19 hospitalization was calculated for a primary series plus a booster and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. VE analyses were stratified by immune status (immunocompetent; immunocompromised) because the recommended vaccine schedules are different for these groups. The primary analysis evaluated all COVID-19 vaccine types combined and secondary analyses evaluated specific vaccine products. Results: Among immunocompetent patients, VE against Omicron COVID-19 hospitalization for a primary series plus one booster of any vaccine product dose was 77% (95% CI: 71-82%), and for a primary series alone was 44% (95% CI: 31-54%) (p<0.001). VE was higher for a boosted regimen than a primary series alone for both mRNA vaccines used in the US (BNT162b2: primary series plus booster VE 80% (95% CI: 73-85%), primary series alone VE 46% (95% CI: 30-58%) [p<0.001]; mRNA-1273: primary series plus booster VE 77% (95% CI: 67-83%), primary series alone VE 47% (95% CI: 30-60%) [p<0.001]). Among immunocompromised patients, VE for a primary series of any vaccine product against Omicron COVID-19 hospitalization was 60% (95% CI: 41-73%). Insufficient sample size has accumulated to calculate effectiveness of boosted regimens for immunocompromised patients. Conclusions: Among immunocompetent people, a booster dose of COVID-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing COVID-19 hospitalization due to the Omicron variant.

3.
Angew Chem Int Ed Engl ; 60(51): 26647-26655, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34662473

ABSTRACT

Manganese complexes supported by macrocyclic tetrapyrrole ligands represent an important platform for nitrene transfer catalysis and have been applied to both C-H amination and olefin aziridination catalysis. The reactivity of the transient high-valent Mn nitrenoids that mediate these processes renders characterization of these species challenging. Here we report the synthesis and nitrene transfer photochemistry of a family of MnIII N-haloamide complexes. The S=2 N-haloamide complexes are characterized by 1 H NMR, UV-vis, IR, high-frequency and -field EPR (HFEPR) spectroscopies, and single-crystal X-ray diffraction. Photolysis of these complexes results in the formal transfer of a nitrene equivalent to both C-H bonds, such as the α-C-H bonds of tetrahydrofuran, and olefinic substrates, such as styrene, to afford aminated and aziridinated products, respectively. Low-temperature spectroscopy and analysis of kinetic isotope effects for C-H amination indicate halogen-dependent photoreactivity: Photolysis of N-chloroamides proceeds via initial cleavage of the Mn-N bond to generate MnII and amidyl radical intermediates; in contrast, photolysis of N-iodoamides proceeds via N-I cleavage to generate a MnIV nitrenoid (i.e., {MnNR}7 species). These results establish N-haloamide ligands as viable precursors in the photosynthesis of metal nitrenes and highlight the power of ligand design to provide access to reactive intermediates in group-transfer catalysis.

4.
Naturwissenschaften ; 104(3-4): 33, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28341961

ABSTRACT

The Northern clingfish is a small, Eastern North Pacific fish that can attach to rough, fouled rocks in the intertidal. Their ability to attach to surfaces has been measured previously in the laboratory, and in this study, we show the roughness and fouling of the natural habitat of these fish. We introduce a new method for measuring surface roughness of natural substrates with time-limited accessibility. We expect this method to be broadly applicable in studies of animal/substrate surface interactions in habitats difficult to characterize. Our roughness measurements demonstrate that the fish's ability to attach to very coarse roughness is required in its natural environment. Some of the rocks showed even coarser roughness than the fish could attach to in the lab setting. We also characterized the clingfish's preference for other habitat descriptors such as the size of the rocks, biofilm, and Aufwuchs (macroalgae, encrusting invertebrates) cover, as well as grain size of underlying substrate. Northern clingfish seek shelter under rocks of 15-45 cm in size. These rocks have variable Aufwuchs cover, and gravel is the main underlying substrate type. In the intertidal, environmental conditions change with the tides, and for clingfish, the daily time under water (DTUW%) was a key parameter explaining distribution. Rather than location being determined by intertidal zonation, an 80% DTUW, a finer scale concept of tidal inundation, was required by the fish. We expect that this is likely because the mobility of the fish allows them to more closely track the ideal inundation in the marine intertidal.


Subject(s)
Ecosystem , Marine Biology , Perciformes/physiology , Air , Animals , Geologic Sediments , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...