Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 45(2): 1668-1681, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35503825

ABSTRACT

Dynamic measurement precision assessment has been achieved for a differential circle measurement application. Differential circle diameter measurement, in image analysis, typically requires fitting a circle model that optimizes for image distortions, defects or occlusions. The differential task occurs when precise measurements of diameter change are required given object size variation with time. An automated system was designed to provide diameter measurements and associated measurement precision of images of a fuel droplet undergoing combustion in zero gravity for the FLEX-2 dataset. An image gradient-based, least-squares boundary point fitting method to a circle or ellipse model is used for diameter measurement. The presence of soot aggregates poses significant challenges for diameter measurements when it occludes part of the droplet boundary. The precision of the diameter measurements depends upon the image quality. Using synthetic image simulations that model the soot behavior, we developed a model based on image quality measures that assesses the measurement precision for each individual diameter measurement. Thus, diameter measurements with precision assessments were made available for follow-up scientific analysis. The algorithm's success rate for measurable runs was 98%. In cases of limited occlusion, a measurement precision of ±0.2 pixels for the FLEX-2 dataset was achieved.

2.
J Hazard Mater ; 424(Pt C): 127520, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34749231

ABSTRACT

Hydrothermal flames are formed in supercritical water in the presence of a fuel and an oxidant (usually air or oxygen). Integrating hydrothermal flames as the heat source for supercritical water oxidation helps to minimize the reaction time (to milliseconds), improve the reaction kinetics and reduce the chances of corrosion and reactor plugging. This review outlines state-of-the-art research on hydrothermal flames including the impacts of process parameters on flame ignition. The ignition and sustainability of hydrothermal flames are dependent on several factors such as the type of fuel and its concentration, type of oxidant (air and oxygen) as well as the temperatures and flow rate of the feed and oxidant. The article describes some novel applications of hydrothermal flames for clean energy production, geothermal energy recovery, deep well spallation, wastewater treatment, degradation of recalcitrant nitrogen-containing compounds and heavy oil upgrading. Finally, the challenges and future perspectives of hydrothermal flame applications are discussed. This review also highlights some technical considerations relating to hydrothermal flames such as the choice of organic solvent and its characteristics, preheating, ignition mechanism, flame stability and propagation, advanced reactor configurations, mixing with subcritical and supercritical components, recirculation zones, cooling mechanisms, corrosion and salt precipitation.

3.
Proc Math Phys Eng Sci ; 471(2179): 20150059, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26345080

ABSTRACT

In this paper, we formulate and analyse an elementary model for autoignition of cylindrical laminar jets of fuel injected into an oxidizing ambient at rest. This study is motivated by renewed interest in analysis of hydrothermal flames for which such configuration is common. As a result of our analysis, we obtain a sharp characterization of the autoignition position in terms of the principal physical and geometrical parameters of the problem.

SELECTION OF CITATIONS
SEARCH DETAIL
...