Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Epidemics ; 48: 100789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39255654

ABSTRACT

Plasmodium vivax is the most geographically widespread malaria parasite. P. vivax has the ability to remain dormant (as a hypnozoite) in the human liver and subsequently reactivate, which makes control efforts more difficult. Given the majority of P. vivax infections are due to hypnozoite reactivation, targeting the hypnozoite reservoir with a radical cure is crucial for achieving P. vivax elimination. Stochastic effects can strongly influence dynamics when disease prevalence is low or when the population size is small. Hence, it is important to account for this when modelling malaria elimination. We use a stochastic multiscale model of P. vivax transmission to study the impacts of multiple rounds of mass drug administration (MDA) with a radical cure, accounting for superinfection and hypnozoite dynamics. Our results indicate multiple rounds of MDA with a high-efficacy drug are needed to achieve a substantial probability of elimination. This work has the potential to help guide P. vivax elimination strategies by quantifying elimination probabilities for an MDA approach.


Subject(s)
Antimalarials , Disease Eradication , Malaria, Vivax , Mass Drug Administration , Plasmodium vivax , Humans , Malaria, Vivax/prevention & control , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Mass Drug Administration/statistics & numerical data , Plasmodium vivax/drug effects , Plasmodium vivax/physiology , Disease Eradication/methods , Disease Eradication/statistics & numerical data , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Stochastic Processes , Computer Simulation
2.
J R Soc Interface ; 21(215): 20240038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835247

ABSTRACT

The health and economic impacts of infectious diseases such as COVID-19 affect all levels of a community from the individual to the governing bodies. However, the spread of an infectious disease is intricately linked to the behaviour of the people within a community since crowd behaviour affects individual human behaviour, while human behaviour affects infection spread, and infection spread affects human behaviour. Capturing these feedback loops of behaviour and infection is a well-known challenge in infectious disease modelling. Here, we investigate the interface of behavioural science theory and infectious disease modelling to explore behaviour and disease (BaD) transmission models. Specifically, we incorporate a visible protective behaviour into the susceptible-infectious-recovered-susceptible (SIRS) transmission model using the socio-psychological Health Belief Model to motivate behavioural uptake and abandonment. We characterize the mathematical thresholds for BaD emergence in the BaD SIRS model and the feasible steady states. We also explore, under different infectious disease scenarios, the effects of a fully protective behaviour on long-term disease prevalence in a community, and describe how BaD modelling can investigate non-pharmaceutical interventions that target-specific components of the Health Belief Model. This transdisciplinary BaD modelling approach may reduce the health and economic impacts of future epidemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/psychology , COVID-19/epidemiology , Health Belief Model , Health Behavior
4.
PLoS Comput Biol ; 20(3): e1011931, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483975

ABSTRACT

Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Parasites , Superinfection , Animals , Humans , Plasmodium vivax , Models, Theoretical , Recurrence
5.
Epidemics ; 46: 100743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290265

ABSTRACT

Infectious disease modelling has been prominent throughout the COVID-19 pandemic, helping to understand the virus' transmission dynamics and inform response policies. Given their potential importance and translational impact, we evaluated the computational reproducibility of infectious disease modelling articles from the COVID era. We found that four out of 100 randomly sampled studies released between January 2020 and August 2022 could be completely computationally reproduced using the resources provided (e.g., code, data, instructions) whilst a further eight were partially reproducible. For the 100 most highly cited articles from the same period we found that 11 were completely reproducible with a further 22 partially reproducible. Reflecting on our experience, we discuss common issues affecting computational reproducibility and how these might be addressed.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19/epidemiology , Pandemics , Reproducibility of Results , Communicable Diseases/epidemiology
6.
Bull Math Biol ; 85(6): 43, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076740

ABSTRACT

Plasmodium vivax is the most geographically widespread malaria-causing parasite resulting in significant associated global morbidity and mortality. One of the factors driving this widespread phenomenon is the ability of the parasites to remain dormant in the liver. Known as 'hypnozoites', they reside in the liver following an initial exposure, before activating later to cause further infections, referred to as 'relapses'. As around 79-96% of infections are attributed to relapses from activating hypnozoites, we expect it will be highly impactful to apply treatment to target the hypnozoite reservoir (i.e. the collection of dormant parasites) to eliminate P. vivax. Treatment with radical cure, for example tafenoquine or primaquine, to target the hypnozoite reservoir is a potential tool to control and/or eliminate P. vivax. We have developed a deterministic multiscale mathematical model as a system of integro-differential equations that captures the complex dynamics of P. vivax hypnozoites and the effect of hypnozoite relapse on disease transmission. Here, we use our multiscale model to study the anticipated effect of radical cure treatment administered via a mass drug administration (MDA) program. We implement multiple rounds of MDA with a fixed interval between rounds, starting from different steady-state disease prevalences. We then construct an optimisation model with three different objective functions motivated on a public health basis to obtain the optimal MDA interval. We also incorporate mosquito seasonality in our model to study its effect on the optimal treatment regime. We find that the effect of MDA interventions is temporary and depends on the pre-intervention disease prevalence (and choice of model parameters) as well as the number of MDA rounds under consideration. The optimal interval between MDA rounds also depends on the objective (combinations of expected intervention outcomes). We find radical cure alone may not be enough to lead to P. vivax elimination under our mathematical model (and choice of model parameters) since the prevalence of infection eventually returns to pre-MDA levels.


Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Animals , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Antimalarials/therapeutic use , Mass Drug Administration , Models, Biological , Mathematical Concepts , Recurrence
7.
Viruses ; 15(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36851664

ABSTRACT

Japanese encephalitis virus (JEV) is an arboviral, encephalitogenic, zoonotic flavivirus characterized by its complex epidemiology whose transmission cycle involves reservoir and amplifying hosts, competent vector species and optimal environmental conditions. Although typically endemic in Asia and parts of the Pacific Islands, unprecedented outbreaks in both humans and domestic pigs in southeastern Australia emphasize the virus' expanding geographical range. To estimate areas at highest risk of JEV transmission in Australia, ecological niche models of vectors and waterbirds, a sample of piggery coordinates and feral pig population density models were combined using mathematical and geospatial mapping techniques. These results highlight that both coastal and inland regions across the continent are estimated to have varying risks of enzootic and/or epidemic JEV transmission. We recommend increased surveillance of waterbirds, feral pigs and mosquito populations in areas where domestic pigs and human populations are present.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Epidemics , Humans , Animals , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Mosquito Vectors , Australia/epidemiology
8.
Trop Med Infect Dis ; 7(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36548648

ABSTRACT

Recent Japanese encephalitis virus (JEV) outbreaks in southeastern Australia have sparked interest into epidemiological factors surrounding the virus' novel emergence in this region. Here, the geographic distribution of mosquito species known to be competent JEV vectors in the country was estimated by combining known mosquito occurrences and ecological drivers of distribution to reveal insights into communities at highest risk of infectious disease transmission. Species distribution models predicted that Culex annulirostris and Culex sitiens presence was mostly likely along Australia's eastern and northern coastline, while Culex quinquefasciatus presence was estimated to be most likely near inland regions of southern Australia as well as coastal regions of Western Australia. While Culex annulirostris is considered the dominant JEV vector in Australia, our ecological niche models emphasise the need for further entomological surveillance and JEV research within Australia.

9.
Bull Math Biol ; 84(8): 81, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778540

ABSTRACT

Malaria is caused by Plasmodium parasites which are transmitted to humans by the bite of an infected Anopheles mosquito. Plasmodium vivax is distinct from other malaria species in its ability to remain dormant in the liver (as hypnozoites) and activate later to cause further infections (referred to as relapses). Mathematical models to describe the transmission dynamics of P. vivax have been developed, but most of them fail to capture realistic dynamics of hypnozoites. Models that do capture the complexity tend to involve many governing equations, making them difficult to extend to incorporate other important factors for P. vivax, such as treatment status, age and pregnancy. In this paper, we have developed a multiscale model (a system of integro-differential equations) that involves a minimal set of equations at the population scale, with an embedded within-host model that can capture the dynamics of the hypnozoite reservoir. In this way, we can gain key insights into dynamics of P. vivax transmission with a minimum number of equations at the population scale, making this framework readily scalable to incorporate more complexity. We performed a sensitivity analysis of our multiscale model over key parameters and found that prevalence of P. vivax blood-stage infection increases with both bite rate and number of mosquitoes but decreases with hypnozoite death rate. Since our mathematical model captures the complex dynamics of P. vivax and the hypnozoite reservoir, it has the potential to become a key tool to inform elimination strategies for P. vivax.


Subject(s)
Anopheles , Malaria, Vivax , Malaria , Animals , Humans , Mathematical Concepts , Models, Biological , Models, Theoretical , Plasmodium vivax
10.
PLoS One ; 13(12): e0208203, 2018.
Article in English | MEDLINE | ID: mdl-30521550

ABSTRACT

BACKGROUND: Dengue is the fastest spreading vector-borne viral disease, resulting in an estimated 390 million infections annually. Precise prediction of many attributes related to dengue is still a challenge due to the complex dynamics of the disease. Important attributes to predict include: the risk of and risk factors for an infection; infection severity; and the timing and magnitude of outbreaks. In this work, we build a model for predicting the risk of dengue transmission using high-resolution weather data. The level of dengue transmission risk depends on the vector density, hence we predict risk via vector prediction. METHODS AND FINDINGS: We make use of surveillance data on Aedes aegypti larvae collected by the Taiwan Centers for Disease Control as part of the national routine entomological surveillance of dengue, and weather data simulated using the IBM's Containerized Forecasting Workflow, a high spatial- and temporal-resolution forecasting system. We propose a two stage risk prediction system for assessing dengue transmission via Aedes aegypti mosquitoes. In stage one, we perform a logistic regression to determine whether larvae are present or absent at the locations of interest using weather attributes as the explanatory variables. The results are then aggregated to an administrative division, with presence in the division determined by a threshold percentage of larvae positive locations resulting from a bootstrap approach. In stage two, larvae counts are estimated for the predicted larvae positive divisions from stage one, using a zero-inflated negative binomial model. This model identifies the larvae positive locations with 71% accuracy and predicts the larvae numbers producing a coverage probability of 98% over 95% nominal prediction intervals. This two-stage model improves the overall accuracy of identifying larvae positive locations by 29%, and the mean squared error of predicted larvae numbers by 9.6%, against a single-stage approach which uses a zero-inflated binomial regression approach. CONCLUSIONS: We demonstrate a risk prediction system using high resolution weather data can provide valuable insight to the distribution of risk over a geographical region. The work also shows that a two-stage approach is beneficial in predicting risk in non-homogeneous regions, where the risk is localised.


Subject(s)
Dengue Virus/pathogenicity , Dengue/transmission , Disease Outbreaks/prevention & control , Models, Biological , Mosquito Vectors/virology , Aedes/virology , Animals , Dengue/epidemiology , Dengue/virology , Environmental Monitoring/statistics & numerical data , Humans , Larva/virology , Logistic Models , Population Density , Risk Assessment/methods , Taiwan/epidemiology , Weather
SELECTION OF CITATIONS
SEARCH DETAIL