Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Genes Environ ; 43(1): 50, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34772463

ABSTRACT

BACKGROUND: Mutation, inflammation, and oxidative damage including lipid-peroxidation are factors involved in the development of cancer. We investigated the antimutagenic, in vivo and in vitro anti-inflammatory, and antioxidative effects of the juice of Vitis ficifolia var. ganebu (known as Ryukyu-ganebu in Japan) harvested in Kuchinoshima island (hereafter, the juice is referred to as ganebu-K) in comparison with the juice of Vitis coignetiae (crimson glory vine, known as yamabudo in Japan; hereafter, the juice is referred to as yamabudo) which we found antimutagenic and anti-inflammatory effects. RESULTS: Ganebu-K inhibited the mutagenic activity of several carcinogens, MeIQx, IQ, Trp-P-2(NHOH), and MNNG, model compounds of tumor initiation. Using S. typhimurium YG7108, a strain lacking O6-methylguanine DNA methyltransferases, ganebu-K showed no significant inhibition of the mutagenicity of MNNG. Thus, DNA repair of O6-methylguanine produced by MNNG might be an antimutagenic target of the components in ganebu-K. Topical application of ganebu-K to the dorsal sides of mice resulted in potent suppression of acute edema induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Ganebu-K, but not yamabudo, exhibited significant inhibition of the induction of prostaglandin E2 (PGE2) induced by TPA. Components contained in ganebu-K, but not in yamabudo, might be responsible for the inhibition of the induction of PGE2. Ganebu-K inhibited in vivo lipid peroxidation and decreased the level of glutamic oxaloacetic transaminase induced by CCL4 treatment. CONCLUSIONS: These results suggest that the active components in ganebu-K juice are not the same as those in yamabudo, and the components in ganebu-K are attractive candidates as chemopreventive agents.

2.
Food Chem Toxicol ; 154: 112319, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34087405

ABSTRACT

Previously, we isolated and identified anti-mutagenic and anti-inflammatory components from Vitis coignetiae (crimson glory vine, known as yamabudo in Japan) as 2,6-dimethoxy-1,4-benzoquinone (DBQ), fertaric acid and caftaric acid. We also reported that the oral intake of a partially purified fraction from yamabudo juice (yamabudo-fr) or DBQ affords significant protection against two-stage skin carcinogenesis in mice. In this study, we found that oral intake of yamabudo-fr or DBQ affords significant protection against a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse model of lung tumorigenesis. Furthermore, we investigated the anti-tumorigenic mechanisms of yamabudo juice and DBQ. NNK is known to be a DNA-methylating and alkylating agent; thus, we investigated the anti-tumorigenic mechanisms of yamabudo juice and DBQ in relation to DNA methylation. Pretreatment with yamabudo-fr or DBQ dose-dependently decreased formation of O6-methylguanine and N7-methylguanine in DNA of the A549 human lung epithelial-like cell line treated with a methylating agent, 1-methyl-3-nitro-1-nitrosoguanidine. Yamabudo juice and DBQ inhibited the mutagenicity of NNK in the Ames test using Salmonella typhimurium TA1535 but not S. typhimurium YG7108, an alkylguanine DNA alkyltransferase-deficient strain (same as TA1535 but Δadast::Kmr, Δogtst::Cmr). Yamabudo juice and DBQ might accelerate the repair of DNA damage caused by NNK and reduce DNA damage to cells. We also investigated the effects of yamabudo juice and DBQ on signaling pathways in A549 cells. With or without epidermal growth factor stimulation, phosphorylation of Erk1/2, Akt and Stat3 in A549 cells was significantly decreased in the presence of yamabudo juice or DBQ, indicating that yamabudo juice and DBQ suppressed PI3K/AKT, MAPK/ERK and JAK/STAT3 signaling pathways. These results suggest that both initiation and growth/progression steps in carcinogenesis, especially anti-oxidant effects, stimulation of repair of alkyl DNA adducts and suppressed growth signaling pathways are potential anti-tumorigenic targets of yamabudo juice and DBQ in NNK-induced lung tumorigenesis.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Benzoquinones/pharmacology , Carcinogens/toxicity , Lung Neoplasms/prevention & control , Nitrosamines/toxicity , Vitis/chemistry , A549 Cells , Animals , Antimutagenic Agents/pharmacology , DNA Repair/drug effects , Female , Humans , Mice , Phosphorylation
3.
Genes Environ ; 38: 25, 2016.
Article in English | MEDLINE | ID: mdl-27822323

ABSTRACT

BACKGROUND: Actinidia arguta, known as sarunashi in Japan, is a vine tree native to east-Asia, including Japan, that produces small fruit rich in anthocyanins, catechins, vitamin C, chlorophyll, beta-carotene and other polyphenols. RESULTS: Our study revealed the inhibitory effect of the juice of A. arguta (arguta-juice) toward the mutagenicity of food-derived carcinogens and polycyclic aromatic hydrocarbons using the Ames test, and antioxidant activity of arguta-juice as determined using a free radical scavenging assay. The formation of DNA adducts in liver of mice fed 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) decreased significantly following administration of arguta-juice. The preventive effect of arguta-juice on the induction of inflammation of mouse ear by 12-O-tetradecanoylphorbol-13-acetate (TPA) was revealed. The anti-carcinogenic effect of a topically applied partially purified fraction of A. arguta was revealed on skin tumorigenesis in mice induced by treatment with 7,12-dimethylbenz(a)anthracene and TPA. In an effort to reveal the mechanisms for antimutagenicity of arguta-juice, effects on the enzymes that metabolize xenobiotics were examined. Combined effects comprising i) inhibition of the metabolic activation of mutagens with phase I enzymes, but ii) no prevention on the activity of phase II detoxification enzyme, UGT, were observed. We also investigated the characterization and partial purification of the antimutagenic components in A. arguta, which suggested that the components in A. arguta responsible for the antimutagenicity were water-soluble, heat-labile phenolic compounds. CONCLUSIONS: These results suggested that components in A. arguta are attractive candidates for potential use as chemopreventive agents.

SELECTION OF CITATIONS
SEARCH DETAIL