Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37252834

ABSTRACT

MOTIVATION: Elementary flux modes are a well-known tool for analyzing metabolic networks. The whole set of elementary flux modes (EFMs) cannot be computed in most genome-scale networks due to their large cardinality. Therefore, different methods have been proposed to compute a smaller subset of EFMs that can be used for studying the structure of the network. These latter methods pose the problem of studying the representativeness of the calculated subset. In this article, we present a methodology to tackle this problem. RESULTS: We have introduced the concept of stability for a particular network parameter and its relation to the representativeness of the EFM extraction method studied. We have also defined several metrics to study and compare the EFM biases. We have applied these techniques to compare the relative behavior of previously proposed methods in two case studies. Furthermore, we have presented a new method for the EFM computation (PiEFM), which is more stable (less biased) than previous ones, has suitable representativeness measures, and exhibits better variability in the extracted EFMs. AVAILABILITY AND IMPLEMENTATION: Software and additional material are freely available at https://github.com/biogacop/PiEFM.


Subject(s)
Algorithms , Computer Simulation , Metabolic Networks and Pathways , Software , Bias , Escherichia coli/metabolism , Models, Biological , Systems Biology/methods
2.
Metabolites ; 10(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260526

ABSTRACT

Structural analysis of constraint-based metabolic network models attempts to find the network's properties by searching for subsets of suitable modes or Elementary Flux Modes (EFMs). One useful approach is based on Linear Program (LP) techniques, which introduce an objective function to convert the stoichiometric and thermodynamic constraints into a linear program (LP), using additional constraints to generate different nontrivial modes. This work introduces FLFS-FC (Fixed Length Function Sampling with Flux Coupling), a new approach to increase the efficiency of generation of large sets of different EFMs for the network. FLFS-FC is based on the importance of the length of the objective functions used in the associated LP problem and the imposition of additional negative constraints. Our proposal overrides some of the known drawbacks associated with the EFM extraction, such as the appearance of unfeasible problems or multiple repeated solutions arising from different LP problems.

3.
Bioinformatics ; 36(14): 4163-4170, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32348455

ABSTRACT

MOTIVATION: Elementary flux modes (EFMs) are a key tool for analyzing genome-scale metabolic networks, and several methods have been proposed to compute them. Among them, those based on solving linear programming (LP) problems are known to be very efficient if the main interest lies in computing large enough sets of EFMs. RESULTS: Here, we propose a new method called EFM-Ta that boosts the efficiency rate by analyzing the information provided by the LP solver. We base our method on a further study of the final tableau of the simplex method. By performing additional elementary steps and avoiding trivial solutions consisting of two cycles, we obtain many more EFMs for each LP problem posed, improving the efficiency rate of previously proposed methods by more than one order of magnitude. AVAILABILITY AND IMPLEMENTATION: Software is freely available at https://github.com/biogacop/Boost_LP_EFM. CONTACT: fguil@um.es. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metabolic Flux Analysis , Programming, Linear , Algorithms , Escherichia coli , Metabolic Networks and Pathways , Models, Biological
4.
BMC Syst Biol ; 12(Suppl 5): 101, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458791

ABSTRACT

BACKGROUND: Although cellular metabolism has been widely studied, its fully comprehension is still a challenge. A main tool for this study is the analysis of meaningful pieces of knowledge called modes and, in particular, specially interesting classes of modes such as pathways and Elementary Flux Modes (EFMs). Its study often has to deal with issues such as the appearance of infeasibilities or the difficulty of finding representative enough sets of modes that are free of repetitions. Mode extraction methods usually incorporate strategies devoted to mitigate this phenomena but they still get a high ratio of repetitions in the set of solutions. RESULTS: This paper presents a proposal to improve the representativeness of the full set of metabolic reactions in the set of computed modes by penalizing the eventual high frequency of occurrence of some reactions during the extraction. This strategy can be applied to any linear programming based extraction existent method. CONCLUSIONS: Our strategy enhances the quality of a set of extracted EFMs favouring the presence of every reaction in it and improving the efficiency by mitigating the occurrence of repeated solutions. The new proposed strategy can complement other EFMs extraction methods based on linear programming. The obtained solutions are more likely to be diverse using less computing effort and improving the efficiency of the extraction.


Subject(s)
Escherichia coli/metabolism , Metabolic Networks and Pathways , Models, Biological , Programming, Linear , Algorithms , Computer Simulation , Metabolic Flux Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...