Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Clin Chim Acta ; 561: 119840, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950693

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as promising diagnostic biomarkers. Here, we investigated the cardiac-expressed and plasma-detectable lncRNA PDE4DIPP6 as a biomarker for non-ST-segment elevation myocardial infarction (NSTEMI), specifically assessing its potential to enhance the diagnostic efficacy of high-sensitivity cardiac troponin (hs-cTnT). METHODS AND RESULTS: The study enrolled individuals presenting with suspected acute coronary syndrome (ACS). LncRNA quantification was performed in plasma samples using RT-qPCR. The discriminatory performance was assessed by calculating the Area Under the Curve (AUC). Reclassification metrics, including the Integrated Discrimination Improvement (IDI) and Net Reclassification Improvement (NRI) indexes, were utilized to evaluate enhancements in diagnostic accuracy. Among the 252 patients with suspected ACS, 50.8 % were diagnosed with ACS, and 13.9 % with NSTEMI. Initially, the association of lncRNA PDE4DIPP6 with ACS was investigated. Elevated levels of this lncRNA were observed in ACS patients compared to non-ACS subjects. No association was found between lncRNA PDE4DIPP6 levels and potential confounding factors, nor was a significant correlation with hs-cTnT levels (rho = 0.071). The inclusion of lncRNA PDE4DIPP6 on top of hs-cTnT significantly improved the discrimination and classification of ACS patients, as reflected by an enhanced AUC of 0.734, an IDI of 0.066 and NRI of 0.471. Subsequently, the lncRNA PDE4DIPP6 was evaluated as biomarker of NSTEMI. Elevated levels of the lncRNA were observed in NSTEMI patients compared to patients without NSTEMI. Consistent with previous findings, the addition of lncRNA PDE4DIPP6 to hs-cTnT improved the discrimination and classification of patients, increasing the AUC from 0.859 to 0.944, with an IDI of 0.237 and NRI of 0.658. CONCLUSION: LncRNA PDE4DIPP6 offers additional diagnostic insights beyond hs-cTnT, suggesting its potential to improve the clinical management of patients with NSTEMI.

2.
Int J Biol Macromol ; 269(Pt 2): 131926, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688344

ABSTRACT

Circulating cell-free microRNAs (miRNAs) are promising biomarkers for medical decision-making. Suitable endogenous controls are essential to ensure reproducibility. We aimed to identify and validate endogenous reference miRNAs for qPCR data normalization in samples from SARS-CoV-2-infected hospitalized patients. We used plasma samples (n = 170) from COVID-19 patients collected at hospital admission (COVID-Ponent project, www.clinicaltrials.gov/NCT04824677). First, 179 miRNAs were profiled using RT-qPCR. After stability assessment, candidates were validated using the same methodology. miRNA stability was analyzed using the geNorm, NormFinder and BestKeeper algorithms. Stability was further evaluated using an RNA-seq dataset derived from COVID-19 hospitalized patients, along with plasma samples from patients with critical COVID-19 profiled using RT-qPCR. In the screening phase, after strict control of expression levels, stability assessment selected eleven candidates (miR-17-5p, miR-20a-5p, miR-30e-5p, miR-106a-5p, miR-151a-5p, miR-185-5p, miR-191-5p, miR-423-3p, miR-425-5p, miR-484 and miR-625-5p). In the validation phase, all algorithms identified miR-106a-5p and miR-484 as top endogenous controls. No association was observed between these miRNAs and clinical or sociodemographic characteristics. Both miRNAs were stably detected and showed low variability in the additional analyses. In conclusion, a 2-miRNA panel composed of miR-106a-5p and miR-484 constitutes a first-line normalizer for miRNA-based biomarker development using qPCR in hospitalized patients infected with SARS-CoV-2.


Subject(s)
Biomarkers , COVID-19 , MicroRNAs , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/diagnosis , Biomarkers/blood , SARS-CoV-2/genetics , MicroRNAs/blood , MicroRNAs/genetics , Male , Female , Middle Aged , Severity of Illness Index , Aged , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Adult , Reproducibility of Results
3.
Mol Ther Nucleic Acids ; 35(1): 102118, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38314095

ABSTRACT

Elucidating the pathobiological mechanisms underlying post-acute pulmonary sequelae following SARS-CoV-2 infection is essential for early interventions and patient stratification. Here, we investigated the potential of microRNAs (miRNAs) as theranostic agents for pulmoprotection in critical illness survivors. Multicenter study including 172 ICU survivors. Diffusion impairment was defined as a lung-diffusing capacity for carbon monoxide (DLCO) <80% within 12 months postdischarge. A disease-associated 16-miRNA panel was quantified in plasma samples collected at ICU admission. Bioinformatic analyses were conducted using KEGG, Reactome, GTEx, and Drug-Gene Interaction databases. The results were validated using an external RNA-seq dataset. A 3-miRNA signature linked to diffusion impairment (miR-27a-3p, miR-93-5p, and miR-199a-5p) was identified using random forest. Levels of miR-93-5p and miR-199a-5p were independently associated with the outcome, improving patient classification provided by the electronic health record. The experimentally validated targets of these miRNAs exhibited enrichment across diverse pathways, with telomere length quantification in an additional set of samples (n = 83) supporting the role of cell senescence in sequelae. Analysis of an external dataset refined the pathobiological fingerprint of pulmonary sequelae. Gene-drug interaction analysis revealed four FDA-approved drugs. Overall, this study advances our understanding of lung recovery in postacute respiratory infections, highlighting the potential of miRNAs and their targets for pulmoprotection.

4.
Br J Pharmacol ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359818

ABSTRACT

BACKGROUND AND PURPOSE: The post-acute sequelae of SARS-CoV-2 infection pose a significant global challenge, with nearly 50% of critical COVID-19 survivors manifesting persistent lung abnormalities. The lack of understanding about the molecular mechanisms and effective treatments hampers their management. Here, we employed microRNA (miRNA) profiling to decipher the systemic molecular underpinnings of the persistent pulmonary complications. EXPERIMENTAL APPROACH: We conducted a longitudinal investigation including 119 critical COVID-19 survivors. A comprehensive pulmonary evaluation was performed in the short-term (median = 94.0 days after hospital discharge) and long-term (median = 358 days after hospital discharge). Plasma miRNAs were quantified at the short-term evaluation using the gold-standard technique, RT-qPCR. The analyses combined machine learning feature selection techniques with bioinformatic investigations. Two additional datasets were incorporated for validation. KEY RESULTS: In the short-term, 84% of the survivors exhibited impaired lung diffusion (DLCO  < 80% of predicted). One year post-discharge, 54.4% of this patient subgroup still presented abnormal DLCO . Four feature selection methods identified two specific miRNAs, miR-9-5p and miR-486-5p, linked to persistent lung dysfunction. The downstream experimentally validated targetome included 1473 genes, with heterogeneous enriched pathways associated with inflammation, angiogenesis and cell senescence. Validation studies using RNA-sequencing and proteomic datasets emphasized the pivotal roles of cell migration and tissue repair in persistent lung dysfunction. The repositioning potential of the miRNA targets was limited. CONCLUSION AND IMPLICATIONS: Our study reveals early mechanistic pathways contributing to persistent lung dysfunction in critical COVID-19 survivors, offering a promising approach for the development of targeted disease-modifying agents.

5.
Respir Res ; 24(1): 159, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37328754

ABSTRACT

BACKGROUND: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. METHODS: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. RESULTS: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. CONCLUSIONS: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.


Subject(s)
COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prospective Studies , Retrospective Studies , COVID-19/diagnosis , COVID-19/genetics , Critical Illness , Biomarkers , Intensive Care Units
6.
Biomed Pharmacother ; 154: 113617, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058144

ABSTRACT

BACKGROUND: Up to 80% of patients surviving acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 infection present persistent anomalies in pulmonary function after hospital discharge. There is a limited understanding of the mechanistic pathways linked to post-acute pulmonary sequelae. AIM: To identify the molecular underpinnings associated with severe lung diffusion involvement in survivors of SARS-CoV-2-induced ARDS. METHODS: Survivors attended to a complete pulmonary evaluation 3 months after hospital discharge. RNA sequencing (RNA-seq) was performed using Illumina technology in whole-blood samples from 50 patients with moderate to severe diffusion impairment (DLCO<60%) and age- and sex-matched individuals with mild-normal lung function (DLCO≥60%). A transcriptomic signature for optimal classification was constructed using random forest. Transcriptomic data were analyzed for biological pathway enrichment, cellular deconvolution, cell/tissue-specific gene expression and candidate drugs. RESULTS: RNA-seq identified 1357 differentially expressed transcripts. A model composed of 14 mRNAs allowed the optimal discrimination of survivors with severe diffusion impairment (AUC=0.979). Hallmarks of lung sequelae involved cell death signaling, cytoskeleton reorganization, cell growth and differentiation and the immune response. Resting natural killer (NK) cells were the most important immune cell subtype for the prediction of severe diffusion impairment. Components of the signature correlated with neutrophil, lymphocyte and monocyte counts. A variable expression profile of the transcripts was observed in lung cell subtypes and bodily tissues. One upregulated gene, TUBB4A, constitutes a target for FDA-approved drugs. CONCLUSIONS: This work defines the transcriptional programme associated with post-acute pulmonary sequelae and provides novel insights for targeted interventions and biomarker development.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , COVID-19/genetics , Humans , Lung , Respiratory Distress Syndrome/genetics , SARS-CoV-2 , Survivors , Tubulin
7.
Front Immunol ; 13: 942443, 2022.
Article in English | MEDLINE | ID: mdl-35967328

ABSTRACT

Introduction: Bronchial aspirates (BAS) obtained during invasive mechanical ventilation (IMV) constitutes a useful tool for molecular phenotyping and decision making. Aim: To identify the proteomic determinants associated with disease pathogenesis, all-cause mortality and respiratory sequelae in BAS samples from critically ill patients with SARS-CoV-2-induced ARDS. Methods: Multicenter study including 74 critically ill patients with COVID-19 and non-COVID-19 ARDS. BAS were obtained by bronchoaspiration after IMV initiation. Three hundred sixty-four proteins were quantified using proximity extension assay (PEA) technology. Random forest models were used to assess predictor importance. Results: After adjusting for confounding factors, CST5, NADK, SRPK2 and TGF-α were differentially detected in COVID-19 and non-COVID-19 patients. In random forest models for COVID-19, CST5, DPP7, NADK, KYAT1 and TYMP showed the highest variable importance. In COVID-19 patients, reduced levels of ENTPD2 and PTN were observed in nonsurvivors of ICU stay, even after adjustment. AGR2, NQO2, IL-1α, OSM and TRAIL showed the strongest associations with in-ICU mortality and were used to construct a protein-based prediction model. Kaplan-Meier curves revealed a clear separation in mortality risk between subgroups of PTN, ENTPD2 and the prediction model. Cox regression models supported these findings. In survivors, the levels of FCRL1, NTF4 and THOP1 in BAS samples obtained during the ICU stay correlated with lung function (i.e., DLCO levels) 3 months after hospital discharge. Similarly, Flt3L and THOP1 levels were correlated with radiological features (i.e., TSS). These proteins are expressed in immune and nonimmune lung cells. Poor host response to viral infectivity and an inappropriate reparative mechanism seem to be linked with the pathogenesis of the disease and fatal outcomes, respectively. Conclusion: BAS proteomics identified novel factors associated with the pathology of SARS-CoV-2-induced ARDS and its adverse outcomes. BAS-based protein testing emerges as a novel tool for risk assessment in the ICU.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , Critical Illness , Humans , Mucoproteins , Oncogene Proteins , Protein Serine-Threonine Kinases , Proteomics , Respiratory Distress Syndrome/etiology , SARS-CoV-2
8.
Emerg Microbes Infect ; 11(1): 1537-1549, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35603455

ABSTRACT

There is a limited understanding of the pathophysiology of postacute pulmonary sequelae in severe COVID-19. The aim of current study was to define the circulating microRNA (miRNA) profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. The study included patients who developed ARDS secondary to SARS-CoV-2 infection (n = 167) and a group of infected patients who did not develop ARDS (n = 33). Patients were evaluated 3 months after hospital discharge. The follow-up included a complete pulmonary evaluation and chest computed tomography. Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (DLCO) and total severity score (TSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted. DLCO < 80% predicted was observed in 81.8% of the patients. TSS showed a median [P25;P75] of 5 [2;8]. The miRNA model associated with DLCO comprised miR-17-5p, miR-27a-3p, miR-126-3p, miR-146a-5p and miR-495-3p. Concerning radiologic features, a miRNA signature composed by miR-9-5p, miR-21-5p, miR-24-3p and miR-221-3p correlated with TSS values. These associations were not observed in the non-ARDS group. KEGG pathway and GO enrichment analyses provided evidence of molecular mechanisms related not only to profibrotic or anti-inflammatory states but also to cell death, immune response, hypoxia, vascularization, coagulation and viral infection. In conclusion, diffusing capacity and radiological features in survivors from SARS-CoV-2-induced ARDS are associated with specific miRNA profiles. These findings provide novel insights into the possible molecular pathways underlying the pathogenesis of pulmonary sequelae.Trial registration: ClinicalTrials.gov identifier: NCT04457505..Trial registration: ISRCTN.org identifier: ISRCTN16865246..


Subject(s)
COVID-19 , Circulating MicroRNA , Respiratory Distress Syndrome , COVID-19/complications , Circulating MicroRNA/genetics , Humans , Lung , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Survivors
12.
Front Med (Lausanne) ; 8: 756517, 2021.
Article in English | MEDLINE | ID: mdl-35186962

ABSTRACT

BACKGROUND: The pathophysiology of COVID-19-related critical illness is not completely understood. Here, we analyzed the microRNA (miRNA) profile of bronchial aspirate (BAS) samples from COVID-19 and non-COVID-19 patients admitted to the ICU to identify prognostic biomarkers of fatal outcomes and to define molecular pathways involved in the disease and adverse events. METHODS: Two patient populations were included (n = 89): (i) a study population composed of critically ill COVID-19 and non-COVID-19 patients; (ii) a prospective study cohort composed of COVID-19 survivors and non-survivors among patients assisted by invasive mechanical ventilation (IMV). BAS samples were obtained by bronchoaspiration during the ICU stay. The miRNA profile was analyzed using RT-qPCR. Detailed biomarker and bioinformatics analyses were performed. RESULTS: The deregulation in five miRNA ratios (miR-122-5p/miR-199a-5p, miR-125a-5p/miR-133a-3p, miR-155-5p/miR-486-5p, miR-214-3p/miR-222-3p, and miR-221-3p/miR-27a-3p) was observed when COVID-19 and non-COVID-19 patients were compared. In addition, five miRNA ratios segregated between ICU survivors and nonsurvivors (miR-1-3p/miR-124-3p, miR-125b-5p/miR-34a-5p, miR-126-3p/miR-16-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). Through multivariable analysis, we constructed a miRNA ratio-based prediction model for ICU mortality that optimized the best combination of miRNA ratios (miR-125b-5p/miR-34a-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). The model (AUC 0.85) and the miR-199a-5p/miR-9-5p ratio (AUC 0.80) showed an optimal discrimination value and outperformed the best clinical predictor for ICU mortality (days from first symptoms to IMV initiation, AUC 0.73). The survival analysis confirmed the usefulness of the miRNA ratio model and the individual ratio to identify patients at high risk of fatal outcomes following IMV initiation. Functional enrichment analyses identified pathological mechanisms implicated in fibrosis, coagulation, viral infections, immune responses and inflammation. CONCLUSIONS: COVID-19 induces a specific miRNA signature in BAS from critically ill patients. In addition, specific miRNA ratios in BAS samples hold individual and collective potential to improve risk-based patient stratification following IMV initiation in COVID-19-related critical illness. The biological role of the host miRNA profiles may allow a better understanding of the different pathological axes of the disease.

13.
Environ Sci Pollut Res Int ; 25(19): 18894-18913, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29717427

ABSTRACT

The design of hybrid mesoporous TiO2-SiO2 (TS1) materials decorated with Ag and Pt nanoparticles was performed. The photocatalytic degradation of phenol under artificial solar irradiation was studied and the activity and selectivity of the intermediate products were verified. TiO2-SiO2 was prepared by sol-gel method while Ag- and Pt-based photocatalysts (TS1-Ag and TS1-Pt) were prepared by photodeposition of the noble metals on TS1. Two series of photocatalysts were prepared varying Ag and Pt contents (0.5 and 1.0 wt%). An increase in the photocatalytic activity up to two and five times higher than TS1 was found on TS1-Ag-1.0 and TS1-Pt-1.0, respectively. Changes in the intermediate products were detected on Ag- and Pt-based photocatalysts with an increase in the catechol formation up to 3.3 and 6.6 times higher than that observed on TS1, respectively. A two-parallel reaction mechanism for the hydroquinone and catechol formation is proposed. A linear correlation between the photocatalytic activity and the surface concentration of noble metals was found indicating that the electron affinity of noble metals is the driven force for both the increase in the photoactivity and for the remarkable changes in the selectivity of products.


Subject(s)
Nanoparticles/chemistry , Phenol/chemistry , Platinum/chemistry , Silicon Dioxide/chemistry , Silver/chemistry , Sunlight , Titanium/chemistry , Catalysis , Metals , Photochemistry
14.
Photochem Photobiol ; 89(4): 832-40, 2013.
Article in English | MEDLINE | ID: mdl-23360285

ABSTRACT

Bi2 WO6 and Bi2 WO6-TiO2 (5% molar Ti) nano-heterostructures were synthesized by a hydrothermal method. The properties of the synthesized catalysts were characterized, having high photoactivity for Rhodamine B degradation under sun-like illumination, explained by a synergetic mechanism previously proposed through UV and visible induced processes, in which the photosensitization effect of Rhodamine B is considered. We now report that using Phenol, a molecule which does not lead the photosensitization process, the photoactivity decreased considerably, thus emphasizing how important is the model molecule selected as degradation substrate for evaluating the photoactivity. The photocatalytic properties of the synthesized catalysts have been evaluated by exposing a mixture of Rhodamine B and Phenol in water, to different illumination conditions. It can be confirmed that the photoinduced mechanism via the photosensitization of Rhodamine B is a key factor responsible for the increase on the photocatalytic activity showed by the Bi2 WO6-TiO2 compound and that the degradation mechanism of Rhodamine B is not changed by the simultaneous presence of other transparent substrate as Phenol.

15.
Multimed ; 17(4)2013.
Article in Spanish | CUMED | ID: cum-56843

ABSTRACT

La perspectiva de género se basa en la teoría de género, en el paradigma cultural del feminismo; uno de sus fines es contribuir a la construcción subjetiva y social de una configuración que resignifique la sociedad, la cultura y la política desde el género. El objetivo de esta investigación es revisar aspectos de la perspectiva de género. Género es la categoría que utiliza la sociedad para designar la forma en que los grandes grupos humanos de hombres y mujeres se expresan a nivel social(AU)


The perspective of gender is based in the theory of gender, in the cultural paradigm of the feminism; one of its purposes is to contribute in the subjective and social creation of a configuration that emphazises the society, the culture and the politics from the gender. The objective of this research is to review the aspects of the gender perspective. Gender is the category that the society uses to designate the way in which the big human groups of men and women express themselves in the social level(EU)


Subject(s)
Gender Identity , Personality Development
16.
MULTIMED ; 13(3-4)2009. tab
Article in Spanish | CUMED | ID: cum-55113

ABSTRACT

El suicidio, como una de las causas más frecuentes de defunción a escala mundial, plantea un problema de gran magnitud, que justifica los esfuerzos a desarrollar por las organizaciones de salud en diferentes latitudes para prevenir y controlar los intentos suicidas en la población. El presente trabajo aborda el estudio observacional del tipo, casos y controles, con los pacientes reportados como intento suicida entre enero del 2007 y diciembre del 2009 pertenecientes al municipio de Yara, con el objetivo de comparar la diferencia entre ellos y personas supuestamente sanas con relación a factores psicológicos, familiares, biológicas y psicosociales esenciales de riesgo de la conducta suicida. Se estudiaron 92 pacientes y 184 personas controles. Se les aplicó un cuestionario de recogida de datos diseñado al efecto, los resultados se sometieron a análisis porcentual y al estadígrafo Odd Ratio. Se concluyó que existen diferencias significativas entre las personas supuestamente sanas y con intento suicida con relación a los factores estudiados y se encontró que los factores: manejo inadecuado del adolescente (el más fuertemente asociado), depresión, violencia familiar, falta de afecto, sentimientos de desesperanza, tienen relación significativa de causalidad con la conducta suicida, mientras que los factores biológicos y psicológicos no guardan relación significativa de causalidad con esta conducta, en nuestro estudio(AU)


Suicide as one of the most frequent causes of death in the world, states a huge problem that justifies the efforts of several health organizations in different latitudes in order to prevent and control the suicide attempts in the population. This work refers to the observational research of the type, cases and controls with the patients reported as suicide attempts since January 2007 to December 2009, in Yara, with the objective to compare the difference among the patients and the apparently health people in regard to the main psychological, familiar, biologic, psychosocial risk factors of the suicide behaviour. There were analyzed 92 patients and 184 controls. There were applied a questionnaire of data developed for that purpose, the results were analyzed in percentage and in ODD ratio estadigraph. As a conclusion it can be said that there are significant differences among apparently health people and people with suicide attempt in relation to the studied factors, and it was noticed that unappropiated adolescent handling, depression, familiar violence, lack of affection, feelings of hopeless, have a significative relation to suicide behaviour while the biological and psychological factors do not have meaningful relation to this behaviour in our research(EU)


Subject(s)
Humans , Adolescent , Suicide, Attempted/prevention & control , Suicide, Attempted/psychology , Adolescent Behavior , Risk Factors , Case-Control Studies , Observational Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...