Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 9(3): 973-980, 2022 03 07.
Article in English | MEDLINE | ID: mdl-34935815

ABSTRACT

To date, many of the high-performance conjugated polymers employed as OECT channel materials make use of ethylene glycol (EG) chains to confer the materials with mixed ionic-electronic conduction properties, with limited emphasis placed on alternative hydrophilic moieties. While a degree of hydrophilicity is required to facilitate some ionic conduction in hydrated channels, an excess results in excessive swelling, with potentially detrimental effects on charge transport. This is therefore a subtle balance that must be optimised to maximise electrical performance. Herein a series of polymers based on a bithiophene-thienothiophene conjugated backbone was synthesised and the conventional EG chains substituted by their propylene and butylene counterparts. Specifically, the use of propylene and butylene chains was found to afford polymers with a more hydrophobic character, thereby reducing excessive water uptake during OECT operation and in turn significantly boosting the polymers' electronic charge carrier mobility. Despite the polymers' lower water uptake, the newly developed oligoether chains retained sufficiently high degrees of hydrophilicity to enable bulk volumetric doping, ultimately resulting in the development of polymers with superior OECT performance.


Subject(s)
Ethylene Glycol , Polymers , Alkenes , Butylene Glycols , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry
2.
Angew Chem Int Ed Engl ; 60(14): 7777-7785, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33259685

ABSTRACT

Donor-acceptor (D-A) polymers are promising materials for organic electrochemical transistors (OECTs), as they minimize detrimental faradaic side-reactions during OECT operation, yet their steady-state OECT performance still lags far behind their all-donor counterparts. We report three D-A polymers based on the diketopyrrolopyrrole unit that afford OECT performances similar to those of all-donor polymers, hence representing a significant improvement to the previously developed D-A copolymers. In addition to improved OECT performance, DFT simulations of the polymers and their respective hole polarons also reveal a positive correlation between hole polaron delocalization and steady-state OECT performance, providing new insights into the design of OECT materials. Importantly, we demonstrate how polaron delocalization can be tuned directly at the molecular level by selection of the building blocks comprising the polymers' conjugated backbone, thus paving the way for the development of even higher performing OECT polymers.

3.
Adv Mater ; 32(37): e2002748, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32754923

ABSTRACT

A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady-state performances in terms of [µC* ] and current retentions up to 98% over 700 electrochemical switching cycles are developed.

4.
Anal Bioanal Chem ; 412(24): 6265-6273, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32020319

ABSTRACT

We present a simple, rapid method for forming supported lipid bilayers on organic electronic devices composed of conducting polymer electrodes using a solvent-assisted lipid bilayer formation method. These supported bilayers present protein recognition elements that are mobile, critical for multivalent binding interactions. Because these polymers are transparent and conducting, we demonstrate, by optical and electrical detection, the specific interactions of proteins with these biomembrane-based bioelectronic devices. This work paves the way for easy formation of biomembrane mimetics for sensing and detection of binding events in a label-free manner on organic electronic devices of more sophisticated architectures. Graphical abstract.


Subject(s)
Biomimetics/instrumentation , Electronics/instrumentation , Lipid Bilayers/chemistry , Polystyrenes/chemistry , Thiophenes/chemistry , Animals , Biosensing Techniques/instrumentation , Biotinylation , Cattle , Electric Conductivity , Electrodes , Equipment Design , Ligands , Protein Binding , Proteins/metabolism , Serum Albumin, Bovine/metabolism
5.
ACS Appl Mater Interfaces ; 11(47): 43799-43810, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31659897

ABSTRACT

Membrane biosensors that can rapidly sense pathogen interaction and disrupting agents are needed to identify and screen new drugs to combat antibiotic resistance. Bioelectronic devices have the capability to read out both ionic and electrical signals, but their compatibility with biological membranes is somewhat limited. Supported lipid bilayers (SLBs) have served as useful biomimetics for a myriad of research topics involving biological membranes. However, SLBs are traditionally made on inert, rigid, inorganic surfaces. Here, we demonstrate a versatile and facile method for generating SLBs on a conducting polymer device using a solvent-assisted lipid bilayer (SALB) technique. We use this bioelectronic device to form both mammalian and bacterial membrane mimetics to sense the membrane interactions with a bacterial toxin (α-hemolysin) and an antibiotic compound (polymyxin B), respectively. Our results show that we can form high quality bilayers of both types and sense these particular interactions with them, discriminating between pore formation, in the case of α-hemolysin, and disruption of the bilayer, in the case of polymyxin B. The SALB formation method is compatible with many membrane compositions that will not form via common vesicle fusion methods and works well in microfluidic devices. This, combined with the massive parallelization possible for the fabrication of electronic devices, can lead to miniaturized multiplexed devices for rapid data acquisition necessary to identify antibiotic targets that specifically disrupt bacterial, but not mammalian membranes, or identify bacterial toxins that strongly interact with mammalian membranes.


Subject(s)
Biomimetics/methods , Biosensing Techniques/methods , Lipid Bilayers/chemistry , Biomimetics/instrumentation , Biosensing Techniques/instrumentation , Cell Membrane/chemistry , Hemolysin Proteins/analysis , Polymers/chemistry , Polymyxin B/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...