Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1131995, 2023.
Article in English | MEDLINE | ID: mdl-37522123

ABSTRACT

Introduction: Hormonal contraceptives (HCs), nowadays one of the most used contraceptive methods, downregulate endogenous ovarian hormones, which have multiple plastic effects in the adult brain. HCs usually contain a synthetic estrogen, ethinyl-estradiol, and a synthetic progestin, which can be classified as androgenic or anti-androgenic, depending on their interaction with androgen receptors. Both the anterior cingulate cortex (ACC) and the amygdala express steroid receptors and have shown differential functionality depending on the hormonal status of the participant and the use of HC. In this work, we investigated for the first time the relationship between ACC and amygdala resting state functional connectivity (rs-FC) and HC use duration, while controlling for progestin androgenicity. Methods: A total of 231 healthy young women participated in five different magnetic resonance imaging studies and were included in the final analysis. The relation between HC use duration and (i) gray matter volume, (ii) fractional amplitude of low-frequency fluctuations, and (iii) seed-based connectivity during resting state in the amygdalae and ACC was investigated in this large sample of women. Results: In general, rs-FC of the amygdalae with frontal areas, and between the ACC and temporoparietal areas, decreased the longer the HC exposure and independently of the progestin's androgenicity. The type of HC's progestin did show a differential effect in the gray matter volume of left ACC and the connectivity between bilateral ACC and the right inferior frontal gyrus.

2.
Transl Psychiatry ; 13(1): 209, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328507

ABSTRACT

Combined oral contraceptives (COC) are among the most commonly used contraceptive methods worldwide, and mood side effects are the major reason for discontinuation of treatment. We here investigate the directed connectivity patterns associated with the mood side effects of an androgenic COC in a double-blind randomized, placebo-controlled trial in women with a history of affective COC side effects (n = 34). We used spectral dynamic causal modeling on a triple network model consisting of the default mode network (DMN), salience network (SN) and executive control network (ECN). Within this framework, we assessed the treatment-related changes in directed connectivity associated with adverse mood side effects. Overall, during COC use, we found a pattern of enhanced connectivity within the DMN and decreased connectivity within the ECN. The dorsal anterior cingulate cortex (SN) mediates an increased recruitment of the DMN by the ECN during treatment. Mood lability was the most prominent COC-induced symptom and also arose as the side effect most consistently related to connectivity changes. Connections that were related to increased mood lability showed increased connectivity during COC treatment, while connections that were related to decreased mood lability showed decreased connectivity during COC treatment. Among these, the connections with the highest effect size could also predict the participants' treatment group above chance.


Subject(s)
Affect , Brain , Humans , Female , Brain/diagnostic imaging , Brain Mapping , Contraceptives, Oral, Combined/adverse effects , Contraception , Magnetic Resonance Imaging
3.
Psychoneuroendocrinology ; 154: 106292, 2023 08.
Article in English | MEDLINE | ID: mdl-37210755

ABSTRACT

Previous cross-sectional studies observed differences between users and non-users of combined oral contraceptives (COCs) in both the structure and function of the fusiform face area (FFA) related to face processing. For the present study 120 female participants performed high-resolution structural, as well as functional scans at rest, during face encoding and face recognition. Participants were either never-users of COCs (26), current first-time users of androgenic (29) or anti-androgenic COCs (23) or previous users of androgenic (21) or anti-androgenic COCs (21). Results suggest that associations between COC-use and face processing are modulated by androgenicity, but do not persist beyond the duration of COC use. The majority of findings concern the connectivity of the left FFA to the left supramarginal gyrus (SMG), which is a key region in cognitive empathy. While connectivity in anti-androgenic COC users differs from never users irrespective of the duration of COC use already at rest, connectivity in androgenic COC users decreases with longer duration of use during face recognition. Furthermore, longer duration of androgenic COC use was related to reduced identification accuracy, as well as increased connectivity of the left FFA to the right orbitofrontal cortex. Accordingly, the FFA and SMG emerge as promising ROIs for future randomized controlled trials on the effects of COC use on face processing.


Subject(s)
Facial Recognition , Female , Humans , Hormonal Contraception , Androgens , Duration of Therapy , Contraceptives, Oral, Combined
5.
Front Endocrinol (Lausanne) ; 13: 885617, 2022.
Article in English | MEDLINE | ID: mdl-36204097

ABSTRACT

Previous studies indicate effects of oral contraceptive (OC) use on spatial and verbal cognition. However, a better understanding of the OC effects is still needed, including the differential effects of androgenic or anti-androgenic OC use and whether the possible impact persists beyond the OC use. We aim to investigate the associations of OC use duration with spatial and verbal cognition, differentiating between androgenic and anti-androgenic OC. Using functional magnetic resonance imaging (MRI), we scanned a group of 94 past and current OC-users in a single session. We grouped current OC users (N=53) and past OC users with a natural cycle (N=41) into androgenic and anti-androgenic user. Effects of OC use duration were observed for current use and after discontinuation. Duration of OC use was reflected only in verbal fluency performance but not navigation: The longer the current OC use, the less words were produced in the verbal fluency task. During navigation, deactivation in the caudate and postcentral gyrus was duration-dependent in current androgenic OC users. Only during the verbal fluency task, duration of previous OC use affects several brain parameters, including activation of the left putamen and connectivity between right-hemispheric language areas (i.e., right inferior frontal gyrus and right angular gyrus). The results regarding performance and brain activation point towards stronger organizational effects of OCs on verbal rather than spatial processing. Irrespective of the task, a duration-dependent connectivity between the hippocampus and various occipital areas was observed. This could suggest a shift in strategy or processing style with long-term contraceptive use during navigation/verbal fluency. The current findings suggest a key role of the progestogenic component of OCs in both tasks. The influence of OC use on verbal fluency remains even after discontinuation which further points out the importance of future studies on OC effects and their reversibility.


Subject(s)
Brain , Magnetic Resonance Imaging , Androgens , Brain/diagnostic imaging , Cognition , Contraceptives, Oral/adverse effects , Female , Humans , Progestins
6.
Front Behav Neurosci ; 16: 775796, 2022.
Article in English | MEDLINE | ID: mdl-35368304

ABSTRACT

Recent research into the effects of hormonal contraceptives on emotion processing and brain function suggests that hormonal contraceptive users show (a) reduced accuracy in recognizing emotions compared to naturally cycling women, and (b) alterations in amygdala volume and connectivity at rest. To date, these observations have not been linked, although the amygdala has certainly been identified as core region activated during emotion recognition. To assess, whether volume, oscillatory activity and connectivity of emotion-related brain areas at rest are predictive of participant's ability to recognize facial emotional expressions, 72 participants (20 men, 20 naturally cycling women, 16 users of androgenic contraceptives, 16 users of anti-androgenic contraceptives) completed a brain structural and resting state fMRI scan, as well as an emotion recognition task. Our results showed that resting brain characteristics did not mediate oral contraceptive effects on emotion recognition performance. However, sex and oral contraceptive use emerged as a moderator of brain-behavior associations. Sex differences did emerge in the prediction of emotion recognition performance by the left amygdala amplitude of low frequency oscillations (ALFF) for anger, as well as left and right amygdala connectivity for fear. Anti-androgenic oral contraceptive users (OC) users stood out in that they showed strong brain-behavior associations, usually in the opposite direction as naturally cycling women, while androgenic OC-users showed a pattern similar to, but weaker, than naturally cycling women. This result suggests that amygdala ALFF and connectivity have predictive values for facial emotion recognition. The importance of the different connections depends heavily on sex hormones and oral contraceptive use.

7.
Commun Biol ; 5(1): 234, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296794

ABSTRACT

Sex differences in navigation have often been attributed to the use of different navigation strategies in men and women. However, no study so far has investigated sex differences in the brain networks supporting different navigation strategies. To address this issue, we employed a 3D-navigation task during functional MRI in 36 men and 36 women, all scanned thrice, and modeled navigation strategies by instructions requiring an allocentric vs. egocentric reference frame on the one hand, as well as landmark-based vs. Euclidian strategies on the other hand. We found distinct brain networks supporting different perspectives/strategies. Men showed stronger activation of frontal areas, whereas women showed stronger activation of posterior brain regions. The left inferior frontal gyrus was more strongly recruited during landmark-based navigation in men. The hippocampus showed stronger connectivity with left-lateralized frontal areas in women and stronger connectivity with superior parietal areas in men. We discuss these findings in the light of a stronger recruitment of verbal networks supporting a more verbal strategy in women compared to a stronger recruitment of spatial networks supporting a more spatial strategy use in men. In summary, this study provides evidence that different navigation strategies activate different brain areas in men and women.


Subject(s)
Spatial Navigation , Brain/diagnostic imaging , Brain/physiology , Female , Hippocampus , Humans , Magnetic Resonance Imaging , Male , Sex Characteristics , Spatial Navigation/physiology
8.
Commun Biol ; 4(1): 954, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376799

ABSTRACT

Longitudinal menstrual cycle studies allow to investigate the effects of ovarian hormones on brain organization. Here, we use spectral dynamic causal modelling (spDCM) in a triple network model to assess effective connectivity changes along the menstrual cycle within and between the default mode, salience and executive control networks (DMN, SN, and ECN). Sixty healthy young women were scanned three times along their menstrual cycle, during early follicular, pre-ovulatory and mid-luteal phase. Related to estradiol, right before ovulation the left insula recruits the ECN, while the right middle frontal gyrus decreases its connectivity to the precuneus and the DMN decouples into anterior/posterior parts. Related to progesterone during the mid-luteal phase, the insulae (SN) engage to each other, while decreasing their connectivity to parietal ECN, which in turn engages the posterior DMN. When including the most confident connections in a leave-one out cross-validation, we find an above-chance prediction of the left-out subjects' cycle phase. These findings corroborate the plasticity of the female brain in response to acute hormone fluctuations and may help to further understand the neuroendocrine interactions underlying cognitive changes along the menstrual cycle.


Subject(s)
Estradiol/metabolism , Menstrual Cycle/physiology , Neural Pathways/physiology , Progesterone/metabolism , Adult , Brain Mapping , Female , Humans , Young Adult
9.
Psychoneuroendocrinology ; 125: 105108, 2021 03.
Article in English | MEDLINE | ID: mdl-33516121

ABSTRACT

Frontal and striatal areas are the neuroanatomical basis for working memory (WM), as well as targets for sex steroids. However, up to date little is known regarding menstrual cycle (MC) effects on brain activation and connectivity patterns during verbal WM. To the best of our knowledge, this is the first longitudinal dataset to study dorsolateral prefrontal cortex, putamen and caudate activation and connectivity patterns during a verbal WM task along the natural MC. Thirty-nine naturally cycling healthy women were scanned three times locked to their MC (menses, pre-ovulatory and luteal phase). They performed an N-back task with two trial types, targets and lures, assessing (i) updating and (ii) inhibitory process respectively. Distinct patterns of fronto-striatal activation and connectivity changes were observed for each process. (i) For targets, we observed decreased connectivity between left striatum- and inferior frontal and parietal areas, the circuit underlying phonological WM, in response to elevated progesterone during the luteal phase. Simultaneously, we observed an alleviation of inhibition from fronto-striatal areas on areas related to higher cognitive effort and the salience network. (ii) For lures, negative inter-hemispheric connectivity between fronto-parietal areas during the pre-ovulatory phase, as well as increased connectivity between bilateral dorsolateral prefrontal cortex and posteromedial structures during the luteal phase. Overall, we corroborated a hormone mediated inter-hemispheric decoupling, enhanced frontal activity and disinhibition of the salience brain network and striatum during the luteal phase. In summary, we interpret these results in relation to a differential top-down regulation in higher hormone levels phases and hyperactive bottom-up network during the luteal phase, which could explain the vulnerability of this phase to MC associated disorders.


Subject(s)
Dorsolateral Prefrontal Cortex , Memory, Short-Term , Brain Mapping , Female , Gonadal Steroid Hormones , Humans , Magnetic Resonance Imaging , Menstrual Cycle
10.
Sci Rep ; 10(1): 15666, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973291

ABSTRACT

The spontaneous eye blink rate (EBR) has been linked to different cognitive processes and neurobiological factors. It has also been proposed as a putative index for striatal dopaminergic function. While estradiol is well-known to increase dopamine levels through multiple mechanisms, no study up to date has investigated whether the EBR changes across the menstrual cycle. This question is imperative however, as women have sometimes been excluded from studies using the EBR due to potential effects of their hormonal profile. Fifty-four women were tested for spontaneous EBR at rest in three different phases of their menstrual cycle: during menses (low progesterone and estradiol), in the pre-ovulatory phase (when estradiol levels peak and progesterone is still low), and during the luteal phase (high progesterone and estradiol). No significant differences were observed across the menstrual cycle and Bayes factors show strong support for the null hypothesis. Instead, we observed high intra-individual consistency of the EBR in our female sample. Accordingly, we strongly encourage including female participants in EBR studies, regardless of their cycle phase.


Subject(s)
Blinking , Eye , Menstrual Cycle/physiology , Adolescent , Adult , Cognition , Estradiol/metabolism , Female , Healthy Volunteers , Humans , Progesterone/metabolism , Young Adult
11.
Brain Struct Funct ; 225(2): 591-605, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31894405

ABSTRACT

Increasing evidence suggests that endogenous sex steroid changes affect human brain functional connectivity, which could be obtained by resting-state fMRI (RS-fMRI). Nevertheless, RS studies on the menstrual cycle (MC) are underrepresented and yield inconsistent results. We attribute these inconsistencies to the use of various methods in exploratory approaches and small sample sizes. Hormonal fluctuations along the MC likely elicit subtle changes that, however, may still have profound impact on network dynamics when affecting key brain nodes. To address these issues, we propose a ROI-based multimodal analysis approach focusing on areas of high functional relevance to adequately capture these changes. To that end, sixty naturally cycling women underwent RS-fMRI in three different cycle phases and we performed the following analyses: (1) group-independent component analyses to identify intrinsic connectivity networks, (2) eigenvector centrality (EC) as a measure of centrality in the global connectivity hierarchy, (3) amplitude of low-frequency fluctuations (ALFF) as a measure of oscillatory activity and (4) seed-based analyses to investigate functional connectivity from the ROIs. For (2)-(4), we applied a hypothesis-driven ROI approach in the hippocampus, caudate and putamen. In the luteal phase, we found (1) decreased intrinsic connectivity of the right angular gyrus with the default mode network, (2) heightened EC for the hippocampus, and (3) increased ALFF for the caudate. Furthermore, we observed (4) stronger putamen-thalamic connectivity during the luteal phase and stronger fronto-striatal connectivity during the pre-ovulatory phase. This hormonal modulation of connectivity dynamics may underlie behavioural, emotional and sensorimotor changes along the MC.


Subject(s)
Brain Mapping/methods , Brain/physiology , Magnetic Resonance Imaging , Menstrual Cycle/physiology , Adolescent , Adult , Caudate Nucleus/physiology , Estradiol/blood , Female , Hippocampus/physiology , Humans , Neural Pathways/physiology , Progesterone/blood , Putamen/physiology , Young Adult
12.
Sci Rep ; 9(1): 11063, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363112

ABSTRACT

Basal ganglia (BG) are involved in inhibitory control (IC) and known to change in structure and activation along the menstrual cycle. Therefore, we investigated BG activation and connectivity patterns related to IC during different cycle phases. Thirty-six naturally cycling women were scanned three times performing a Stop Signal Task and hormonal levels analysed from saliva samples. We found an impaired Stop signal reaction time (SSRT) during pre-ovulatory compared to menses the higher the baseline IC of women. Blood oxygen level dependent (BOLD)-response in bilateral putamen significantly decreased during the luteal phase. Connectivity strength from the left putamen displayed an interactive effect of cycle and IC. During pre-ovulatory the connectivity with anterior cingulate cortex and left inferior parietal lobe was significantly stronger the higher the IC, and during luteal with left supplementary motor area. Right putamen's activation and left hemisphere's connectivity predicted the SSRT across participants. Therefore, we propose a compensatory mechanism for the hormonal changes across the menstrual cycle based on a lateralized pattern.


Subject(s)
Basal Ganglia/physiology , Executive Function/physiology , Individuality , Menstrual Cycle/physiology , Nerve Net/physiology , Reaction Time/physiology , Adolescent , Adult , Basal Ganglia/diagnostic imaging , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Menstrual Cycle/psychology , Nerve Net/diagnostic imaging , Neuropsychological Tests , Young Adult
13.
Sci Rep ; 9(1): 11003, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358839

ABSTRACT

Oral contraceptive (OC) effects on the brain have gained increasing interest, but are highly controversial. Previous studies suggest that OC users have larger hippocampi, parahippocampi, fusiform gyri and Cerebelli. Preliminary evidence from one of those studies even suggests an effect of previous contraceptive use on the hippocampi of women who are not current users of OCs. Furthermore, more recent studies postulate an involvement of previous OC treatment in later development of mood disorders. To address the question whether previous OC treatment affects women's brain structure later in life, high resolution structural images were obtained from 131 naturally cycling women. Among them, 52 women had never used OC before, 52 had previously used one OC for a continuous time period and 27 had previously used multiple contraceptives. The groups did not differ in gray matter volumes. Since endogenous sex hormones modulate gray matter volumes of the hippocampus and basal ganglia along the menstrual cycle, we hypothesize effects of OC use on these areas. Specifically, we hypothesize that a longer duration of previous OC treatment is related to larger hippocampi and larger basal ganglia. Indeed we found the duration of previous OC use to be positively correlated to hippocampal and basal ganglia volumes bilaterally. For the hippocampus, but not for the basal ganglia, this association disappeared after controlling for the time since discontinuation. These results suggest that for the hippocampus, but not for the basal ganglia, effects of previous contraceptive treatment are reversed after a time period comparable to treatment duration. These data question the immediate reversibility of OC effects on brain structure. Accordingly, some changes in the brain due to long-term contraceptive use, while subtle, may be long-lasting.


Subject(s)
Basal Ganglia/drug effects , Contraceptives, Oral/pharmacology , Gray Matter/drug effects , Hippocampus/drug effects , Adult , Basal Ganglia/anatomy & histology , Contraception , Female , Gray Matter/anatomy & histology , Hippocampus/anatomy & histology , Humans , Organ Size/drug effects , Young Adult
14.
Neuropsychopharmacology ; 44(11): 1867-1875, 2019 10.
Article in English | MEDLINE | ID: mdl-31195407

ABSTRACT

Estradiol and progesterone vary along the menstrual cycle and exert opposite effects on a variety of neurotransmitter systems. However, few studies have addressed menstrual cycle-dependent changes in the brain. In the present study we investigate menstrual cycle changes in brain activation and connectivity patterns underlying cognition. Thirty-six naturally cycling women underwent functional MRI during two cognitive tasks: spatial navigation and verbal fluency. While no significant performance differences were observed along the menstrual cycle, the changes in brain activation patterns are strikingly similar during both tasks. Irrespective of the task, estradiol boosts hippocampal activation during the pre-ovulatory cycle phase and progesterone boosts fronto-striatal activation during the luteal cycle phase. Connectivity analyses suggest that the increase in right-hemispheric frontal activation is the result of inter-hemispheric decoupling and is involved in the down-regulation of hippocampal activation.


Subject(s)
Cognition/physiology , Corpus Striatum/physiology , Frontal Lobe/physiology , Hippocampus/physiology , Menstrual Cycle/physiology , Nerve Net/physiology , Adult , Corpus Striatum/diagnostic imaging , Female , Frontal Lobe/diagnostic imaging , Functional Neuroimaging , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Menstrual Cycle/psychology , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Neuropsychological Tests , Young Adult
15.
Sci Rep ; 8(1): 16042, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375425

ABSTRACT

Animal studies have robustly shown hormone related changes in spine density in various brain areas, specifically the hippocampus. Literature on hormone dependent gray matter volume changes in humans is however less consistent. While various areas have been reported to change along the menstrual cycle in women, many do not survive multiple-comparisons correction and only hippocampal changes have been replicated. We attribute these problems to small sample sizes and inconsistent definitions of menstrual cycle phases. In the present study a large sample of 55 women was scanned three times along their menstrual cycle in concisely defined time windows of hormonal changes. Accordingly this is the first study using a large enough sample size to assess menstrual cycle dependent changes in human brain structure with sufficient power. Results confirm a significant estradiol-dependent pre-ovulatory increase in gray matter volumes of the bilateral hippocampus, but also show a significant, progesterone-dependent increase in gray matter volumes of the right basal ganglia after ovulation. No other areas were affect by hormonal changes along the menstrual cycle. These hormone driven menstrual cycle changes in human brain structure are small, but may be the underlying cause of menstrual cycle dependent changes in cognition and emotion.


Subject(s)
Brain Mapping , Brain/physiology , Functional Neuroimaging , Hippocampus/physiology , Menstrual Cycle , Adolescent , Adult , Female , Gonadal Steroid Hormones/metabolism , Hormones/metabolism , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Young Adult
16.
Front Neurosci ; 11: 403, 2017.
Article in English | MEDLINE | ID: mdl-28751855

ABSTRACT

Estradiol and progesterone levels vary along the menstrual cycle and have multiple neuroactive effects, including on the dopaminergic system. Dopamine relates to executive functions in an "inverted U-shaped" manner and its levels are increased by estradiol. Accordingly, dopamine dependent changes in executive functions along the menstrual cycle have been previously studied in the pre-ovulatory phase, when estradiol levels peak. Specifically it has been demonstrated that working memory is enhanced during the pre-ovulatory phase in women with low dopamine baseline levels, but impaired in women with high dopamine baseline levels. However, the role of progesterone, which peaks in the luteal cycle phase, has not been taken into account previously. Therefore, the main goals of the present study were to extend these findings (i) to the luteal cycle phase and (ii) to other executive functions. Furthermore, the usefulness of the eye blink rate (EBR) as an indicator of dopamine baseline levels in menstrual cycle research was explored. 36 naturally cycling women were tested during three cycle phases (menses-low sex hormones; pre-ovulatory-high estradiol; luteal-high progesterone and estradiol). During each session, women performed a verbal N-back task, as measure of working memory, and a single trial version of the Stroop task, as measure of response inhibition and cognitive flexibility. Hormone levels were assessed from saliva samples and spontaneous eye blink rate was recorded during menses. In the N-back task, women were faster during the luteal phase the higher their progesterone levels, irrespective of their dopamine baseline levels. In the Stroop task, we found a dopamine-cycle interaction, which was also driven by the luteal phase and progesterone levels. For women with higher EBR performance decreased during the luteal phase, whereas for women with lower EBR performance improved during the luteal phase. These findings suggest an important role of progesterone in modulating dopamine-cycle interactions. Additionally, we identified the eye blink rate as a non-invasive indicator of baseline dopamine function in menstrual cycle research.

SELECTION OF CITATIONS
SEARCH DETAIL
...