Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 35(19): 3743-3751, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30850846

ABSTRACT

MOTIVATION: Individualized drug response prediction is a fundamental part of personalized medicine for cancer. Great effort has been made to discover biomarkers or to develop machine learning methods for accurate drug response prediction in cancers. Incorporating prior knowledge of biological systems into these methods is a promising avenue to improve prediction performance. High-throughput cell line assays of drug-induced transcriptomic perturbation effects are a prior knowledge that has not been fully incorporated into a drug response prediction model yet. RESULTS: We introduce a unified probabilistic approach, Drug Response Variational Autoencoder (Dr.VAE), that simultaneously models both drug response in terms of viability and transcriptomic perturbations. Dr.VAE is a deep generative model based on variational autoencoders. Our experimental results showed Dr.VAE to do as well or outperform standard classification methods for 23 out of 26 tested Food and Drug Administration-approved drugs. In a series of ablation experiments we showed that the observed improvement of Dr.VAE can be credited to the incorporation of drug-induced perturbation effects with joint modeling of treatment sensitivity. AVAILABILITY AND IMPLEMENTATION: Processed data and software implementation using PyTorch (Paszke et al., 2017) are available at: https://github.com/rampasek/DrVAE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Humans , Machine Learning , Neoplasms , Precision Medicine
3.
Nat Commun ; 7: 12460, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27549343

ABSTRACT

Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2)=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Arthritis, Rheumatoid/drug therapy , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Certolizumab Pegol/therapeutic use , Cohort Studies , Crowdsourcing , Female , Humans , Male , Middle Aged , Prognosis , Treatment Outcome , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...