Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38612694

ABSTRACT

KH-type splicing regulatory protein (KSRP) is a single-stranded nucleic acid-binding protein with multiple functions. It is known to bind AU-rich motifs within the 3'-untranslated region of mRNA species, which in many cases encode dynamically regulated proteins like cytokines. In the present study, we investigated the role of KSRP for the immunophenotype of macrophages using bone marrow-derived macrophages (BMDM) from wild-type (WT) and KSRP-/- mice. RNA sequencing revealed that KSRP-/- BMDM displayed significantly higher mRNA expression levels of genes involved in inflammatory and immune responses, particularly type I interferon responses, following LPS stimulation. In line, time kinetics studies revealed increased levels of interferon-γ (IFN-γ), interleukin (IL)-1ß and IL-6 mRNA in KSRP-/- macrophages after 6 h subsequent to LPS stimulation as compared to WT cultures. At the protein level, KSRP-/- BMDM displayed higher levels of these cytokines after overnight stimulation. Matching results were observed for primary peritoneal macrophages of KSRP-/- mice. These showed higher IL-6, tumor necrosis factor-α (TNF-α), C-X-C motif chemokine 1 (CXCL1) and CC-chemokine ligand 5 (CCL5) protein levels in response to LPS stimulation than the WT controls. As macrophages play a key role in sepsis, the in vivo relevance of KSRP deficiency for cytokine/chemokine production was analyzed in an acute inflammation model. In agreement with our in vitro findings, KSRP-deficient animals showed higher cytokine production upon LPS administration in comparison to WT mice. Taken together, these findings demonstrate that KSRP constitutes an important negative regulator of cytokine expression in macrophages.


Subject(s)
Carrier Proteins , Interleukin-6 , Animals , Mice , Interleukin-6/genetics , Lipopolysaccharides , Macrophages , Cytokines , 3' Untranslated Regions
2.
Sci Rep ; 14(1): 7224, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538761

ABSTRACT

Although Alzheimer's disease (AD) is characterized by distinct pathological changes, their precise impact on cortical functions are not well understood. Here we used TASTPM mice as an AD model and asked whether the development of neurodegenerative changes has an impact on the extracellular space (ECS) and neuronal excitability, in particular cortical spreading depolarization (CSD) which requires intact neuron and glial functions. We studied wildtype (WT) and TASTPM mice (3, 6, and 12 months old). TASTPM mice showed progressive proliferation of neocortical Amyloid-beta (Aß) plaques between 3 and 12 months (more deposits in females than in males) and Aß accumulation in cortical vessels. As plaques proliferated, neuroinflammatory microglial reaction (CD68, CD39 and Galectin-3) and astrogliosis (GFAP) developed progressively. The cortical ECS volume shrank significantly to about half the size of the WT. CSD in both WT and TASTPM mice showed considerable heterogeneity but did not correlate with the histological changes. However, CSDs were easier to elicit in TASTPM than in WT mice at 3 months, and also compared to older TASTPM mice. Moreover, TASTPM mice showed more hyperexcitability manifested as clonic-tonic behavior after sodium thiopental anesthesia. Thus, AD pathology was associated with abnormal hyperexcitability but did not homogenously alter CSD susceptibility.


Subject(s)
Alzheimer Disease , Male , Female , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor , Mice, Transgenic , Mice, Inbred C57BL , Amyloid beta-Peptides , Disease Models, Animal
3.
Cells ; 13(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38334604

ABSTRACT

Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the ß2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant ß (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on ß2 integrins that are specifically expressed by leukocytes. The pathophysiological role of ß2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of ß2 integrins in vivo employed mice with a constitutive knockout of all ß2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of ß2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of ß2 integrins by our group has enabled the dissection of cell-specific roles of ß2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate ß2 integrin activity for therapeutic applications.


Subject(s)
Integrins , Leukocyte-Adhesion Deficiency Syndrome , Humans , Animals , Mice , CD18 Antigens/genetics , Leukocyte-Adhesion Deficiency Syndrome/genetics , Leukocytes/metabolism , Cell Differentiation
4.
Eur J Pharm Biopharm ; 194: 95-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065313

ABSTRACT

Messenger RNA (mRNA) is a powerful tool for nucleic acid-based therapies and vaccination, but efficient and specific delivery to target tissues remains a significant challenge. In this study, we demonstrate lipoamino xenopeptide carriers as components of highly efficient mRNA LNPs. These lipo-xenopeptides are defined as 2D sequences in different 3D topologies (bundles or different U-shapes). The polar artificial amino acid tetraethylene pentamino succinic acid (Stp) and various lipophilic tertiary lipoamino fatty acids (LAFs) act as ionizable amphiphilic units, connected in different ratios via bisamidated lysines as branching units. A series of more lipophilic LAF4-Stp1 carriers with bundle topology is especially well suited for efficient encapsulation of mRNA into LNPs, facilitated cellular uptake and strongly enhanced endosomal escape. These LNPs display improved, faster transfection kinetics compared to standard LNP formulations, with high potency in a variety of tumor cell lines (including N2a neuroblastoma, HepG2 and Huh7 hepatocellular, and HeLa cervical carcinoma cells), J774A.1 macrophages, and DC2.4 dendritic cells. High transfection levels were obtained even in the presence of serum at very low sub-microgram mRNA doses. Upon intravenous application of only 3 µg mRNA per mouse, in vivo mRNA expression is found with a high selectivity for dendritic cells and macrophages, resulting in a particularly high overall preferred expression in the spleen.


Subject(s)
Nanoparticles , Spleen , Mice , Animals , Spleen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nanoparticles/chemistry , Lipids/chemistry , Transfection , Macrophages/metabolism , Dendritic Cells/metabolism , RNA, Small Interfering , Liposomes/metabolism
5.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069260

ABSTRACT

Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.


Subject(s)
Neoplasms , Humans , Mice , Animals , Promoter Regions, Genetic , Genes, Reporter , Neoplasms/metabolism , Dendritic Cells , Luciferases/metabolism , Tumor Microenvironment
6.
Biomolecules ; 13(7)2023 07 06.
Article in English | MEDLINE | ID: mdl-37509121

ABSTRACT

Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.


Subject(s)
Immunosenescence , Humans , Immunosenescence/physiology , Inflammation/metabolism , Aging/physiology , Cytokines/metabolism , Immune System/metabolism
7.
Cell Rep ; 42(2): 112059, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36729833

ABSTRACT

Development of liver fibrosis is paralleled by contraction of hepatic stellate cells (HSCs), the main profibrotic hepatic cells. Yet, little is known about the interplay of neprilysin (NEP) and its substrate neuropeptide Y (NPY), a potent enhancer of contraction, in liver fibrosis. We demonstrate that HSCs are the source of NEP. Importantly, NPY originates majorly from the splanchnic region and is cleaved by NEP in order to terminate contraction. Interestingly, NEP deficiency (Nep-/-) showed less fibrosis but portal hypertension upon liver injury in two different fibrosis models in mice. We demonstrate the incremental benefit of Nep-/- in addition to AT1R blocker (ARB) or ACE inhibitors for fibrosis and portal hypertension. Finally, oral administration of Entresto, a combination of ARB and NEP inhibitor, decreased hepatic fibrosis and portal pressure in mice. These results provide a mechanistic rationale for translation of NEP-AT1R-blockade in human liver fibrosis and portal hypertension.


Subject(s)
Hypertension, Portal , Neuropeptide Y , Mice , Humans , Animals , Receptors, Neuropeptide Y , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Neprilysin , Angiotensin Receptor Antagonists , Hypertension, Portal/drug therapy , Fibrosis , Liver Cirrhosis/drug therapy
8.
PLoS One ; 18(1): e0270288, 2023.
Article in English | MEDLINE | ID: mdl-36719899

ABSTRACT

BACKGROUND: The Rho-kinase ROCK II plays a major role in the activation of hepatic stellate cells (HSC), which are the key profibrotic and contractile cells contributing to the development of chronic liver disease. Inhibition of ROCK II ultimately blocks the phosphorylation of the myosin light chain (MLC) and thus inhibits stress fibre assembly and cell contraction. We investigated the effects of the ROCK inhibitors Y-33075 as well as Y-27632 in murine and human hepatic stellate cells. METHODS: Primary isolated HSC from FVB/NJ mice and the immortalized human HSC line TWNT-4 were culture-activated and incubated with Y-27632 and Y-33075 (10nM to 10µM) for 24h. Protein expression levels were analyzed by Western Blots and transcriptional levels of pro-fibrotic markers and proliferative markers were evaluated using real-time qPCR. Migration was investigated by wound-healing assay. Proliferation was assessed by BrdU assay. Contraction of HSC was measured using 3D collagen matrices after incubation with Y-27632 or Y-33075 in different doses. RESULTS: Both Rho-kinase inhibitors, Y-27632 and Y-33075, reduced contraction, fibrogenesis and proliferation in activated primary mouse HSC (FVB/NJ) and human HSC line (TWNT-4) significantly. Y-33075 demonstrated a 10-times increased potency compared to Y-27632. Surprisingly, both inhibitors mediated a substantial and unexpected increase in migration of HSC in FVB/NJ. CONCLUSION: ROCK inhibition by the tested compounds decreased contraction but increased migration. Y-33075 proved more potent than Y27632 in the inhibition of contraction of HSCs and should be further evaluated in chronic liver disease.


Subject(s)
Signal Transduction , rho-Associated Kinases , Animals , Humans , Mice , Cells, Cultured , Hepatic Stellate Cells/metabolism , rho-Associated Kinases/metabolism
9.
Hepatology ; 77(4): 1228-1240, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35993369

ABSTRACT

BACKGROUND AND AIMS: Janus kinase 2 (JAK2) signaling is increased in human and experimental liver fibrosis with portal hypertension. JAK2 inhibitors, such as pacritinib, are already in advanced clinical development for other indications and might also be effective in liver fibrosis. Here, we investigated the antifibrotic role of the JAK2 inhibitor pacritinib on activated hepatic stellate cells (HSCs) in vitro and in two animal models of liver fibrosis in vivo . APPROACH AND RESULTS: Transcriptome analyses of JAK2 in human livers and other targets of pacritinib have been shown to correlate with profibrotic factors. Although transcription of JAK2 correlated significantly with type I collagen expression and other profibrotic genes, no correlation was observed for interleukin-1 receptor-associated kinase and colony-stimulating factor 1 receptor. Pacritinib decreased gene expression of fibrosis markers in mouse primary and human-derived HSCs in vitro . Moreover, pacritinib decreased the proliferation, contraction, and migration of HSCs. C 57 BL/6J mice received ethanol in drinking water (16%) or Western diet in combination with carbon tetrachloride intoxication for 7 weeks to induce alcoholic or nonalcoholic fatty liver disease. Pacritinib significantly reduced liver fibrosis assessed by gene expression and Sirius red staining, as well as HSC activation assessed by alpha-smooth muscle actin immunostaining in fibrotic mice. Furthermore, pacritinib decreased the gene expression of hepatic steatosis markers in experimental alcoholic liver disease. Additionally, pacritinib protected against liver injury as assessed by aminotransferase levels. CONCLUSIONS: This study demonstrates that the JAK2 inhibitor pacritinib may be promising for the treatment of alcoholic and nonalcoholic liver fibrosis and may be therefore relevant for human pathology.


Subject(s)
Janus Kinase 2 , Liver Cirrhosis , Humans , Mice , Animals , Janus Kinase 2/metabolism , Liver Cirrhosis/pathology , Liver/pathology , Bridged-Ring Compounds/metabolism , Bridged-Ring Compounds/pharmacology , Bridged-Ring Compounds/therapeutic use , Fibrosis , Hepatic Stellate Cells/metabolism
10.
Nat Commun ; 13(1): 4122, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840595

ABSTRACT

Episodic memory formation and recall are complementary processes that rely on opposing neuronal computations in the hippocampus. How this conflict is resolved in hippocampal circuits is unclear. To address this question, we obtained in vivo whole-cell patch-clamp recordings from dentate gyrus granule cells in head-fixed mice trained to explore and distinguish between familiar and novel virtual environments. We find that granule cells consistently show a small transient depolarisation upon transition to a novel environment. This synaptic novelty signal is sensitive to local application of atropine, indicating that it depends on metabotropic acetylcholine receptors. A computational model suggests that the synaptic response to novelty may bias granule cell population activity, which can drive downstream attractor networks to a new state, favouring the switch from recall to new memory formation when faced with novelty. Such a novelty-driven switch may enable flexible encoding of new memories while preserving stable retrieval of familiar ones.


Subject(s)
Hippocampus , Memory, Episodic , Animals , Dentate Gyrus/physiology , Hippocampus/physiology , Mental Recall/physiology , Mice , Neurons/physiology
11.
Cells ; 11(14)2022 07 13.
Article in English | MEDLINE | ID: mdl-35883631

ABSTRACT

Heterodimeric ß2 integrin surface receptors (CD11a-d/CD18) are specifically expressed by leukocytes that contribute to pathogen uptake, cell migration, immunological synapse formation and cell signaling. In humans, the loss of CD18 expression results in leukocyte adhesion deficiency syndrome (LAD-)1, largely characterized by recurrent severe infections. All available mouse models display the constitutive and ubiquitous knockout of either α or the common ß2 (CD18) subunit, which hampers the analysis of the cell type-specific role of ß2 integrins in vivo. To overcome this limitation, we generated a CD18 gene floxed mouse strain. Offspring generated from crossing with CD11c-Cre mice displayed the efficient knockdown of ß2 integrins, specifically in dendritic cells (DCs). Stimulated ß2-integrin-deficient splenic DCs showed enhanced cytokine production and the concomitantly elevated activity of signal transducers and activators of transcription (STAT) 1, 3 and 5, as well as the impaired expression of suppressor of cytokine signaling (SOCS) 2-6 as assessed in bone marrow-derived (BM) DCs. Paradoxically, these BMDCs also showed the attenuated expression of genes involved in inflammatory signaling. In line, in experimental autoimmune encephalomyelitis mice with a conditional DC-specific ß2 integrin knockdown presented with a delayed onset and milder course of disease, associated with lower frequencies of T helper cell populations (Th)1/Th17 in the inflamed spinal cord. Altogether, our mouse model may prove to be a valuable tool to study the leukocyte-specific functions of ß2 integrins in vivo.


Subject(s)
CD18 Antigens , Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental , Inflammation , Animals , CD18 Antigens/genetics , CD18 Antigens/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Encephalomyelitis , Encephalomyelitis, Autoimmune, Experimental/genetics , Gene Expression , Inflammation/genetics , Leukocyte-Adhesion Deficiency Syndrome , Mice
12.
Cell Rep ; 37(8): 110035, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34818555

ABSTRACT

The frontal cortex is essential for organizing voluntary movement. The secondary motor cortex (MOs) is a frontal subregion thought to integrate internal and external inputs before motor action. However, how excitatory and inhibitory synaptic inputs to MOs neurons are integrated preceding movement remains unclear. Here, we address this question by performing in vivo whole-cell recordings from MOs neurons of head-fixed mice moving on a treadmill. We find that principal neurons produce slowly increasing membrane potential and spike ramps preceding spontaneous running. After goal-directed training, ramps show larger amplitudes and accelerated kinetics. Chemogenetic suppression of interneurons combined with modeling suggests that the interplay between parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons, along with principal neuron recurrent connectivity, shape ramping signals. Plasticity of excitatory synapses on SOM+ interneurons can explain the ramp acceleration after training. Altogether, our data reveal that local interneurons differentially control task-dependent ramping signals when MOs neurons integrate inputs preceding movement.


Subject(s)
Locomotion/physiology , Motor Cortex/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Frontal Lobe/physiology , Humans , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Neurons/metabolism , Parvalbumins/metabolism , Patch-Clamp Techniques/methods , Synapses/physiology
14.
Cell ; 183(6): 1586-1599.e10, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33159859

ABSTRACT

The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behavior has not yet been demonstrated. Using an 'all-optical' combination of simultaneous two-photon calcium imaging and two-photon optogenetics, we identified and selectively activated place cells that encoded behaviorally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behavior of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory.


Subject(s)
Hippocampus/cytology , Place Cells/cytology , Spatial Behavior , Spatial Memory , Animals , Behavior, Animal , Male , Mice, Inbred C57BL , Neurons/metabolism , Opsins/metabolism , Optogenetics , Photons , Reward , Running , Spatial Navigation
15.
Neuron ; 108(6): 1103-1112.e6, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33068531

ABSTRACT

How are distinct memories formed and used for behavior? To relate neuronal and behavioral discrimination during memory formation, we use in vivo 2-photon Ca2+ imaging and whole-cell recordings from hippocampal subregions in head-fixed mice performing a spatial virtual reality task. We find that subthreshold activity as well as population codes of dentate gyrus neurons robustly discriminate across different spatial environments, whereas neuronal remapping in CA1 depends on the degree of difference between visual cues. Moreover, neuronal discrimination in CA1, but not in the dentate gyrus, reflects behavioral performance. Our results suggest that CA1 weights the decorrelated information from the dentate gyrus according to its relevance, producing a map of memory representations that can be used by downstream circuits to guide learning and behavior.


Subject(s)
Calcium Signaling/physiology , Hippocampus/physiology , Neurons/physiology , Spatial Memory/physiology , Animals , Dentate Gyrus/physiology , Mice , Patch-Clamp Techniques , Photic Stimulation
17.
PLoS Biol ; 17(9): e3000414, 2019 09.
Article in English | MEDLINE | ID: mdl-31479441

ABSTRACT

Bardet-Biedl syndrome (BBS), a ciliopathy, is a rare genetic condition characterised by retinal degeneration, obesity, kidney failure, and cognitive impairment. In spite of progress made in our general understanding of BBS aetiology, the molecular and cellular mechanisms underlying cognitive impairment in BBS remain elusive. Here, we report that the loss of BBS proteins causes synaptic dysfunction in principal neurons, providing a possible explanation for the cognitive impairment phenotype observed in BBS patients. Using synaptosomal proteomics and immunocytochemistry, we demonstrate the presence of Bbs proteins in the postsynaptic density (PSD) of hippocampal neurons. Loss of Bbs results in a significant reduction of dendritic spines in principal neurons of Bbs mouse models. Furthermore, we show that spine deficiency correlates with events that destabilise spine architecture, such as impaired spine membrane receptor signalling, known to be involved in the maintenance of dendritic spines. Our findings suggest a role for BBS proteins in dendritic spine homeostasis that may be linked to the cognitive phenotype observed in BBS.


Subject(s)
Bardet-Biedl Syndrome/pathology , Cytoskeletal Proteins/metabolism , Dendritic Spines/pathology , Animals , Anxiety , Bardet-Biedl Syndrome/metabolism , Bardet-Biedl Syndrome/physiopathology , Bardet-Biedl Syndrome/psychology , Dentate Gyrus/physiopathology , Disease Models, Animal , Excitatory Postsynaptic Potentials , Female , Male , Memory , Mice , Receptor, IGF Type 1/metabolism , Synaptosomes/metabolism
18.
Bioessays ; 40(11): e1800189, 2018 11.
Article in English | MEDLINE | ID: mdl-30295944

Subject(s)
Hippocampus , Memory , Neurons
19.
Nat Neurosci ; 20(11): 1483-1492, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29073648

ABSTRACT

Synaptic integrative mechanisms have profound effects on electrical signaling in the brain that, although largely hidden from recording methods that observe the spiking activity of neurons, may be critical for the encoding, storage and retrieval of information. Here we review roles for synaptic integrative mechanisms in the selection, generation and plasticity of place and grid fields, and in related temporal codes for the representation of space. We outline outstanding questions and challenges in the testing of hypothesized models for spatial computation and memory.


Subject(s)
Brain/cytology , Cognition/physiology , Neurons/physiology , Space Perception/physiology , Synapses/physiology , Action Potentials/physiology , Animals , Brain/physiology , Humans , Memory/physiology , Neuronal Plasticity/physiology
20.
Cell Rep ; 20(7): 1572-1584, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28813670

ABSTRACT

The transcription factor NKX2-1 is best known for its role in the specification of subsets of cortical, striatal, and pallidal neurons. We demonstrate through genetic fate mapping and intersectional focal septal deletion that NKX2-1 is selectively required in the embryonic septal neuroepithelium for the development of cholinergic septohippocampal projection neurons and large subsets of basal forebrain cholinergic neurons. In the absence of NKX2-1, these neurons fail to develop, causing alterations in hippocampal theta rhythms and severe deficiencies in learning and memory. Our results demonstrate that learning and memory are dependent on NKX2-1 function in the embryonic septum and suggest that cognitive deficiencies that are sometimes associated with pathogenic mutations in NKX2-1 in humans may be a direct consequence of loss of NKX2-1 function.


Subject(s)
Cholinergic Neurons/metabolism , Gene Expression Regulation, Developmental , Hippocampus/metabolism , Memory/physiology , Septum of Brain/metabolism , Thyroid Nuclear Factor 1/genetics , Acetylcholine/metabolism , Animals , Cholinergic Neurons/pathology , Cognition/physiology , Electrodes, Implanted , Embryo, Mammalian , Female , Hippocampus/pathology , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rotarod Performance Test , Septum of Brain/pathology , Stereotaxic Techniques , Theta Rhythm/physiology , Thyroid Nuclear Factor 1/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...