Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4971, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478378

ABSTRACT

P-type ATPases ubiquitously pump cations across biological membranes to maintain vital ion gradients. Among those, the chimeric K+ uptake system KdpFABC is unique. While ATP hydrolysis is accomplished by the P-type ATPase subunit KdpB, K+ has been assumed to be transported by the channel-like subunit KdpA. A first crystal structure uncovered its overall topology, suggesting such a spatial separation of energizing and transporting units. Here, we report two cryo-EM structures of the 157 kDa, asymmetric KdpFABC complex at 3.7 Å and 4.0 Å resolution in an E1 and an E2 state, respectively. Unexpectedly, the structures suggest a translocation pathway through two half-channels along KdpA and KdpB, uniting the alternating-access mechanism of actively pumping P-type ATPases with the high affinity and selectivity of K+ channels. This way, KdpFABC would function as a true chimeric complex, synergizing the best features of otherwise separately evolved transport mechanisms.


Subject(s)
Cryoelectron Microscopy , Escherichia coli Proteins/metabolism , Potassium/metabolism , Protein Subunits/metabolism , Electron Spin Resonance Spectroscopy , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/ultrastructure , Ion Transport , Protein Conformation , Protein Subunits/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...