Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 168841, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036133

ABSTRACT

The use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.8 kWh m-3) but with additional production of iron hydroxide sludge. Only AO allowed for non-selective removal of organic compounds. As a standalone process, AO would require a sharp increase of the energy consumption (116 kWh for 81 % removal of total organic carbon). But using lower electric charge and combining AO with EC and MBR processes would allow for achieving high overall removal yields with limited energy consumption. For example, the overall removal yield of total organic carbon was 65 % by application of AO after EC, with an energy consumption of 21 kWh m-3. Results also showed that such treatment strategy might allow for a significant increase of the biodegradability of the effluent before treatment by the MBR. The MBR might then be dedicated to the removal of the residual organic load as well as to the removal of the nitrogen load. The data obtained in this study also showed that the lower electric charge required for integrating AO in a coupled process would allow for strongly decreasing the formation of undesired by-products such as ClO3- and ClO4-.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Iron , Sewage , Oxidation-Reduction , Bioreactors , Carbon
2.
J Hazard Mater ; 437: 129326, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35714542

ABSTRACT

This study aimed at understanding the influence of the generation of oxidants in a heterogeneous way at boron-doped diamond (BDD) anode (anodic oxidation (AO)) or homogeneously in the bulk (electro-Fenton (EF)) during treatment of a textile industry wastewater. Both processes achieved high TOC removal. A yield of 95 % was obtained by combining EF with BDD anode during 6 h of treatment. The EF process was found to be faster and more efficient for discoloration of the effluent, whereas AO was more effective to limit the formation of degradation by-products in the bulk. An advantage of AO was to treat this alkaline effluent without any pH adjustment. Operating these processes under current limitation allowed optimizing energy consumption in both cases. However, using BDD anode led to the formation of very high concentration of ClO3-/ClO4- from Cl- oxidation (even at low current density), which appears as a key challenge for treatment of such effluent by AO. By comparison, EF with Pt anode strongly reduced the formation of ClO3-/ClO4-. Operating EF at low current density even maintained these concentrations below 0.5 % of the initial Cl- concentration. A trade-off should be considered between TOC removal and formation of toxic chlorinated by-products.


Subject(s)
Wastewater , Water Pollutants, Chemical , Boron , Diamond , Electrodes , Hydrogen Peroxide , Oxidation-Reduction , Textile Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...