Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 9(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38132765

ABSTRACT

Although macrophage depletion is a possible emerging therapeutic strategy for osteoporosis and melanoma, the lack of macrophage functions can lead to inappropriate microbial control, especially the regulation of intestinal microbiota. Cecal ligation and puncture (CLP) sepsis was performed in regular mice and in mice with clodronate-induced macrophage depletion. Macrophage depletion significantly increased the mortality and severity of sepsis-CLP mice, partly through the increased fecal Ascomycota, especially Kazachstania pintolopesii, with polymicrobialbacteremia (Klebsiella pneumoniae, Enterococcus faecalis, and Acinetobacter radioresistens). Indeed, macrophage depletion with sepsis facilitated gut dysbiosis that directly affected gut permeability as yeast cells were located and hidden in the colon crypts. To determine the interactions of fungal molecules on bacterial abundance, the heat-kill lysate of fungi (K. pintolopesii and C. albicans) and purified (1→3)-ß-d-glucan (BG; a major component of the fungal cell wall) were incubated with bacteria that were isolated from the blood of macrophage-depleted mice. There was enhanced cytokine production of enterocytes (Caco-2) after the incubation of the lysate of K. pintolopesii (isolated from sepsis mice), the lysate of C. albicans (extracted from sepsis patients), and BG, together with bacterial lysate. These data support a possible influence of fungi in worsening sepsis severity. In conclusion, macrophage depletion enhanced K. pintolopesii in feces, causing the overgrowth of fecal pathogenic bacteria and inducing a gut permeability defect that additively worsened sepsis severity. Hence, the fecal fungus could be spontaneously elevated and altered in response to macrophage-depleted therapy, which might be associated with sepsis severity.

2.
Immunol Cell Biol ; 101(8): 746-765, 2023 09.
Article in English | MEDLINE | ID: mdl-37575046

ABSTRACT

Alcohol can induce a leaky gut, with translocation of microbial molecules from the gut into the blood circulation. Although the contribution of inflammation to organ-mediated damage in lupus has been previously demonstrated, the mechanistic roles of alcohol consumption in lupus activation are not known. Herein, we tested the effects of 10-week lasting alcohol administration on organ damages and immune responses in 8-week-old lupus-prone Fc gamma receptor IIb-deficient (FcγRIIb-/- ) mice. Our study endpoints were evaluation of systemic inflammation and assessment of fecal dysbiosis along with endotoxemia. In comparison with alcohol-administered wild-type mice, FcγRIIb-/- mice demonstrated more prominent liver damage (enzyme, histological score, apoptosis, malondialdehyde oxidant) and serum interleukin(IL)-6 levels, despite a similarity in leaky gut (fluorescein isothiocyanate-dextran assay, endotoxemia and gut occludin-1 immunofluorescence), fecal dysbiosis (microbiome analysis) and endotoxemia. All alcohol-administered FcγRIIb-/- mice developed lupus-like characteristics (serum anti-dsDNA, proteinuria, serum creatinine and kidney injury score) with spleen apoptosis, whereas control FcγRIIb-/- mice showed only a subtle anti-dsDNA. Both alcohol and lipopolysaccharide (LPS) similarly impaired enterocyte integrity (transepithelial electrical resistance), and only LPS, but not alcohol, upregulated the IL-8 gene in Caco-2 cells. In macrophages, alcohol mildly activated supernatant cytokines (tumor necrosis factor-α and IL-6), but not M1 polarization-associated genes (IL-1ß and iNOS), whereas LPS prominently induced both parameters (more prominent in FcγRIIb-/- macrophages than wild type). There was no synergy in LPS plus alcohol compared with LPS alone in both enterocytes and macrophages. In conclusion, alcohol might exacerbate lupus-like activity partly through a profound inflammation from the leaky gut in FcγRIIb-/- mice.


Subject(s)
Endotoxemia , Receptors, IgG , Animals , Humans , Mice , Caco-2 Cells , Dysbiosis , Ethanol , Lipopolysaccharides , Mice, Inbred C57BL , Receptors, IgG/genetics
3.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36142859

ABSTRACT

Although the impacts of Saccharomyces cerevisiae on cancers are mentioned, data on its use in mice with cyclic GMP-AMP synthase deficiency (cGAS-/-) are even rarer. Here, 12 weeks of oral administration of S. cerevisiae protected cGAS-/- mice from azoxymethane (AOM)-induced colon cancers, partly through dysbiosis attenuation (fecal microbiome analysis). In parallel, a daily intralesional injection of a whole glucan particle (WGP; the beta-glucan extracted from S. cerevisiae) attenuated the growth of subcutaneous tumor using MC38 (murine colon cancer cell line) in cGAS-/- mice. Interestingly, the incubation of fluorescent-stained MC38 with several subtypes of macrophages, including M1 (using Lipopolysaccharide; LPS), M2 (IL-4), and tumor-associated macrophages (TAM; using MC38 supernatant activation), could not further reduce the tumor burdens (fluorescent intensity) compared with M0 (control culture media). However, WGP enhanced tumoricidal activities (fluorescent intensity), the genes of M1 pro-inflammatory macrophage polarization (IL-1ß and iNOS), and Dectin-1 expression and increased cell energy status (extracellular flux analysis) in M0, M2, and TAM. In M1, WGP could not increase tumoricidal activities, Dectin-1, and glycolysis activity, despite the upregulated IL-1ß. In conclusion, S. cerevisiae inhibited the growth of colon cancers through dysbiosis attenuation and macrophage energy activation, partly through Dectin-1 stimulation. Our data support the use of S. cerevisiae for colon cancer protection.


Subject(s)
Colonic Neoplasms , beta-Glucans , Animals , Azoxymethane , Colonic Neoplasms/metabolism , Culture Media/metabolism , Dysbiosis/metabolism , Interleukin-4/metabolism , Lectins, C-Type , Lipopolysaccharides/metabolism , Macrophages/metabolism , Mice , Nucleotidyltransferases/metabolism , Saccharomyces cerevisiae/metabolism , beta-Glucans/metabolism , beta-Glucans/pharmacology
4.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955701

ABSTRACT

Due to (i) the simultaneous presence of Helicobacter pylori (ulcer-induced bacteria) and Candida albicans in the stomach and (ii) the possibility of prokaryotic-eukaryotic endosymbiosis (intravacuolar H. pylori in the yeast cells) under stresses, we tested this symbiosis in vitro and in vivo. To that end, intravacuolar H. pylori were induced by the co-incubation of C. albicans with H. pylori under several stresses (acidic pH, non-H. pylori-enrichment media, and aerobic environments); the results were detectable by direct microscopy (wet mount) and real-time polymerase chain reaction (PCR). Indeed, intravacuolar H. pylori were predominant under all stresses, especially the lower pH level (pH 2-3). Interestingly, the H. pylori (an amoxicillin-sensitive strain) inside C. albicans were protected from the antibiotic (amoxicillin), while extracellular H. pylori were neutralizable, as indicated by the culture. In parallel, the oral administration of intravacuolar H. pylori in mice caused H. pylori colonization in the stomach resulting in gastritis, as indicated by gastric histopathology and tissue cytokines, similar to the administration of free H. pylori (extra-Candida bacteria). In conclusion, Candida protected H. pylori from stresses and antibiotics, and the intravacuolar H. pylori were able to be released from the yeast cells, causing gastric inflammation with neutrophil accumulations.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Amoxicillin , Animals , Anti-Bacterial Agents/pharmacology , Candida , Candida albicans , Gastritis/drug therapy , Gastritis/microbiology , Helicobacter Infections/microbiology , Mice , Vacuoles
5.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806054

ABSTRACT

Klebsiella pneumoniae is an opportunistic pathogen and a commensal organism that is possibly enhanced in several conditions with gut dysbiosis, and frequently detectable together with Candida overgrowth. Here, K. pneumoniae with or without Candida albicans was daily orally administered for 3 months in 0.8% dextran sulfate solution-induced mucositis mice and also tested in vitro. As such, Candida worsened Klebsiella-DSS-colitis as demonstrated by mortality, leaky gut (FITC-dextran assay, bacteremia, endotoxemia, and serum beta-glucan), gut dysbiosis (increased Deferribacteres from fecal microbiome analysis), liver pathology (histopathology), liver apoptosis (activated caspase 3), and cytokines (in serum and in the internal organs) when compared with Klebsiella-administered DSS mice. The combination of heat-killed Candida plus Klebsiella mildly facilitated inflammation in enterocytes (Caco-2), hepatocytes (HepG2), and THP-1-derived macrophages as indicated by supernatant cytokines or the gene expression. The addition of heat-killed Candida into Klebsiella preparations upregulated TLR-2, reduced Occludin (an intestinal tight junction molecule), and worsened enterocyte integrity (transepithelial electrical resistance) in Caco-2 and enhanced casp8 and casp9 (apoptosis genes) in HepG2 when compared with heat-killed Klebsiella alone. In conclusion, Candida enhanced enterocyte inflammation (partly through TLR-2 upregulation and gut dysbiosis) that induced gut translocation of endotoxin and beta-glucan causing hyper-inflammatory responses, especially in hepatocytes and macrophages.


Subject(s)
Colitis , Sepsis , beta-Glucans , Animals , Caco-2 Cells , Candida/metabolism , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Dysbiosis , Humans , Klebsiella pneumoniae/metabolism , Mice , Mice, Inbred C57BL , Sepsis/metabolism , Toll-Like Receptor 2
6.
Sci Rep ; 12(1): 9345, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35661720

ABSTRACT

Because macrophage dysfunction from some emerging therapies might worsen gut-derived sepsis, cecal ligation and puncture (CLP) sepsis are performed in mice with clodronate-induced macrophage depletion. Macrophage depletion (non-sepsis) increased fecal Ascormycota, with a subtle change in bacterial microbiota, that possibly induced gut-barrier defect as Candida pintolopesii and Enterococcus faecalis were identified from blood. Sepsis in macrophage-depleted mice was more severe than sepsis control as indicated by mortality, cytokines, organ injury (liver, kidney, and spleen), gut-leakage (FITC-dextran), fecal Proteobacteria, and blood organisms (bacteria and fungi). Lysate of C. pintolopesii or purified (1 → 3)-ß-D-glucan (BG; a major component of fungal cell wall) enhanced growth of Klebsiella pneumoniae and Escherichia coli that were isolated from the blood of macrophage-depleted CLP mice implying a direct enhancer to some bacterial species. Moreover, the synergy of LPS and BG on enterocytes (Caco-2) (Transepithelial electrical resistance) and neutrophils (cytokines) also supported an influence of gut fungi in worsening sepsis. In conclusion, macrophage depletion enhanced sepsis through the selectively facilitated growth of some bacteria (dysbiosis) from increased fecal fungi that worsened gut-leakage leading to the profound systemic responses against gut-translocated LPS and BG. Our data indicated a possible adverse effect of macrophage-depleted therapies on enhanced sepsis severity through spontaneous elevation of fecal fungi.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Animals , Bacteria , Caco-2 Cells , Cytokines , Disease Models, Animal , Feces/microbiology , Humans , Lipopolysaccharides , Macrophages , Mice , Mice, Inbred C57BL , Punctures
7.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628259

ABSTRACT

BAM15 (a mitochondrial uncoupling agent) was tested on cecal ligation and puncture (CLP) sepsis mice with in vitro experiments. BAM15 attenuated sepsis as indicated by survival, organ histology (kidneys and livers), spleen apoptosis (activated caspase 3), brain injury (SHIRPA score, serum s100ß, serum miR370-3p, brain miR370-3p, brain TNF-α, and apoptosis), systemic inflammation (cytokines, cell-free DNA, endotoxemia, and bacteremia), and blood-brain barrier (BBB) damage (Evan's blue dye and the presence of green fluorescent E. coli in brain after an oral administration). In parallel, brain miR arrays demonstrated miR370-3p at 24 h but not 120 h post-CLP, which was correlated with metabolic pathways. Either lipopolysaccharide (LPS) or TNF-α upregulated miR370-3p in PC12 (neuron cells). An activation by sepsis factors (LPS, TNF-α, or miR370-3p transfection) damaged mitochondria (fluorescent color staining) and reduced cell ATP, possibly through profound mitochondrial activity (extracellular flux analysis) that was attenuated by BAM15. In bone-marrow-derived macrophages, LPS caused mitochondrial injury, decreased cell ATP, enhanced glycolysis activity (extracellular flux analysis), and induced pro-inflammatory macrophages (iNOS and IL-1ß) which were neutralized by BAM15. In conclusion, BAM15 attenuated sepsis through decreased mitochondrial damage, reduced neuronal miR370-3p upregulation, and induced anti-inflammatory macrophages. BAM15 is proposed to be used as an adjuvant therapy against sepsis hyperinflammation.


Subject(s)
Brain Diseases , MicroRNAs , Sepsis , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Brain Diseases/genetics , Brain Diseases/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Punctures , Sepsis/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
8.
Int J Mol Sci ; 23(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35409384

ABSTRACT

(1→3)-ß-D-glucans (BG) (the glucose polymers) are recognized as pathogen motifs, and different forms of BGs are reported to have various effects. Here, different BGs, including Pachyman (BG with very few (1→6)-linkages), whole-glucan particles (BG with many (1→6)-glycosidic bonds), and Oat-BG (BG with (1→4)-linkages), were tested. In comparison with dextran sulfate solution (DSS) alone in mice, DSS with each of these BGs did not alter the weight loss, stool consistency, colon injury (histology and cytokines), endotoxemia, serum BG, and fecal microbiome but Pachyman-DSS-treated mice demonstrated the highest serum cytokine elicitation (TNF-α and IL-6). Likewise, a tail vein injection of Pachyman together with intraperitoneal lipopolysaccharide (LPS) induced the highest levels of these cytokines at 3 h post-injection than LPS alone or LPS with other BGs. With bone marrow-derived macrophages, BG induced only TNF-α (most prominent with Pachyman), while LPS with BG additively increased several cytokines (TNF-α, IL-6, and IL-10); inflammatory genes (iNOS, IL-1ß, Syk, and NF-κB); and cell energy alterations (extracellular flux analysis). In conclusion, Pachyman induced the highest LPS proinflammatory synergistic effect on macrophages, followed by WGP, possibly through Syk-associated interactions between the Dectin-1 and TLR-4 signal transduction pathways. Selection of the proper form of BGs for specific clinical conditions might be beneficial.


Subject(s)
Mucositis , beta-Glucans , Animals , Avena , Cytokines/metabolism , Dextran Sulfate/toxicity , Glucans/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/adverse effects , Macrophages/metabolism , Mice , Mucositis/chemically induced , Tumor Necrosis Factor-alpha/metabolism , beta-Glucans/metabolism , beta-Glucans/pharmacology
9.
Sci Rep ; 10(1): 777, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964918

ABSTRACT

The influence of gut-leakage or gut-microbiota upon lupus progression was explored in 2 lupus mouse models. Pristane, administered in 4-wk-old wild-type (WT) female mice, induced lupus characteristics at 24-wk-old similar to the lupus-onset in FcGRIIb-/- mice. Gut-microbiota alteration was induced by co-housing together with the gavage of feces from 40-wk-old FcGRIIb-/- mice (symptomatic lupus). On the other hand,  gut-leakage was induced  by dextran sulfate solution (DSS). DSS and gut-microbiota alteration induced high serum anti-dsDNA immunoglobulin (Ig) as early as 30 days post-DSS only in FcGRIIb-/- mice. DSS, but not gut-microbiota alteration, enhanced lupus characteristics (serum creatinine and proteinuria) in both lupus models (but not in WT) at 60 days post-DSS. Indeed, DSS induced the translocation of molecular components of gut-pathogens as determined by bacterial burdens in mesenteric lymph node (MLN), endotoxemia (gut-bacterial molecule) and serum (1→3)-ß-D-glucan (BG) (gut-fungal molecule) as early as 15 days post-DSS together with enhanced MLN apoptosis in both WT and lupus mice. However, DSS induced spleen apoptosis in FcGRIIb-/- and WT mice at 30 and 60 days post-DSS, respectively, suggesting the higher impact of gut-leakage against spleen of lupus mice. In addition, macrophages preconditioning with LPS plus BG were susceptible to starvation-induced apoptosis, predominantly in FcGRIIb-/- cell, implying the influence of gut-leakage upon cell stress. In summary, gut-leakage induced gut-translocation of organismal-molecules then enhanced the susceptibility of stress-induced apoptosis, predominantly in lupus. Subsequently, the higher burdens of apoptosis in lupus mice increased anti-dsDNA Ig and worsen lupus severity through immune complex deposition. Hence, therapeutic strategies addressing gut-leakage in lupus are interesting.


Subject(s)
Dextran Sulfate/adverse effects , Lupus Erythematosus, Systemic/genetics , Receptors, IgG/deficiency , Terpenes/adverse effects , Animals , Cytokines/blood , Disease Models, Animal , Disease Progression , Feces/microbiology , Female , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/microbiology , Mice , beta-Glucans/blood
10.
Gut Microbes ; 11(3): 465-480, 2020 05 03.
Article in English | MEDLINE | ID: mdl-31530137

ABSTRACT

CANDIDA ALBICANS: is abundant in the human gut mycobiota but this species does not colonize the mouse gastrointestinal tract. C. albicans administration in dextran-sulfate solution (DSS) induced-colitis mouse model (DSS+Candida) might resemble more to human condition, therefore, a DSS colitis model with Candida administration was studied; first, to test the influence of fungi in DSS model and second, to test the efficacy of Lactobacillus rhamnosus L34. We demonstrated serum (1→3)-ß-D-glucan (BG) elevation in patients with IBD and endoscopic moderate colitis in clinical remission, supporting the possible influence of gut fungi toward IBD in human. Then, in mouse model, Candida gavage was found to worsen the DSS model indicated by higher mortality rate, more severe colon histology and enhanced gut-leakage (FITC-dextran assay, endotoxemia, serum BG and blood bacterial burdens) but did not affect weight loss and diarrhea. DSS+Candida induced higher pro-inflammatory cytokines both in blood and in intestinal tissue. Worsened systemic pro-inflammatory cytokine responses in DSS+Candida compared with DSS alone was possibly due to the more severe translocation of LPS, BG and bacteria (not fungemia) from gut into systemic circulation. Interestingly, bacteremia from Pseudomonas aeruginosa was more frequently isolated from DSS+Candida than DSS alone. In parallel, P. aeruginosa was also isolated from fecal culture in most of the mice in DSS+Candida group supported by prominent Gammaproteobacteria in fecal microbioata analysis. However, L. rhamnosus L34 attenuated both DSS+Candida and DSS model through the attenuation of gut local inflammation (cytokines and histology), gut-leakage severity, fecal dysbiosis (culture method and microbiome analysis) and systemic inflammation (serum cytokines). In conclusion, gut Candida in DSS model induced fecal bacterial dysbiosis and enhanced leaky-gut induced bacteremia. Probiotic treatment strategy aiming to reduce gut-fungi and fecal dysbiosis could attenuate disease severity. Investigation on gut fungi in patients with IBD is highly interesting.


Subject(s)
Bacteremia/microbiology , Candida albicans/pathogenicity , Colitis/microbiology , Dysbiosis/microbiology , Inflammation/microbiology , Lacticaseibacillus rhamnosus/physiology , Adolescent , Adult , Animals , Bacteremia/chemically induced , Bacterial Translocation , Candida albicans/drug effects , Colitis/chemically induced , Colitis/pathology , Cytokines/blood , Dextran Sulfate , Disease Models, Animal , Dysbiosis/chemically induced , Feces/microbiology , Gastrointestinal Microbiome , HT29 Cells , Humans , Inflammation/chemically induced , Male , Mice , Mice, Inbred C57BL , Middle Aged , Probiotics/therapeutic use , Young Adult
11.
Shock ; 53(2): 189-198, 2020 02.
Article in English | MEDLINE | ID: mdl-30829903

ABSTRACT

The influence of gut fungi in chronic colitis was investigated by repeated oral administration of Candida albicans in a 3% dextran sulfate solution (DSS) induced-colitis mouse model. Candida administration in the DSS (DSS+Candida) model enhanced the mortality rate and induced bacteremia (without candidemia) resulting from a gut perm-selectivity defect despite similar diarrheal severity in mice treated with DSS alone. The dominant fecal bacteria in DSS+Candida and DSS alone mice were Pseudomonas spp. and Enterobacter spp., respectively, implying that Candida induced gut dysbiosis. Interestingly, chloramphenicol-resistant bacterial colonies, predominantly Pseudomonas spp., appeared in the feces and blood of DSS+Candida mice (not the DSS alone group) during fungal culture. These antibiotic-resistant bacteria were also isolated, ex vivo, by incubating mouse feces with DSS and heat-killed Candida or (1→3)-ß-D-glucan, suggesting bacterial fermentation on fungi. Administration of Pseudomonas aeruginosa isolated from chloramphenicol-resistant bacteria in the DSS+Candida model enhanced the severity of disease, and increased growth of isolated P aeruginosa in blood agar containing heat-killed Candida was demonstrated. These data suggested the selection of a highly virulent bacterial strain following fecal Candida presentation in the gut. Additionally, reduction of fecal fungi with fluconazole decreased the burden of chloramphenicol-resistant bacteria, attenuating the severity of DSS+Candida. In conclusion, gut Candida induced bacteremia in the DSS model through an inflammation-induced gut perm-selectivity defect and facilitated the growth of some gut bacteria. Treatment strategies aimed at reducing gut fungi could attenuate disease severity. Further investigation of gut fungi in inflammatory bowel disease is warranted.


Subject(s)
Dextran Sulfate/pharmacology , Gastrointestinal Microbiome/drug effects , Sepsis/microbiology , Animals , Candida albicans/drug effects , Disease Models, Animal , Dysbiosis/drug therapy , Dysbiosis/microbiology , Fluconazole/pharmacology , Fluconazole/therapeutic use , HT29 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Pseudomonas aeruginosa/drug effects , Sepsis/drug therapy
12.
PLoS One ; 14(1): e0210798, 2019.
Article in English | MEDLINE | ID: mdl-30645630

ABSTRACT

Gut fungi may influence the course of Clostridium difficile infection either positively or negatively for the host. Fungi are not prominent in the mouse gut, and C. albicans, the major human gastrointestinal commensal yeast, is in low abundance or absent in mice. Bifidobacterium is one of the probiotics that may attenuate the severity of C. difficile infection. Inflammatory synergy between C. albicans and C. difficile, in gut, may provide a state that more closely resembles human infection and be more suitable for testing probiotic effects. We performed fecal mycobiota analysis and administered C. albicans at 1 day prior to C. difficile dosing. Fecal eukaryotic 18S rDNA analysis demonstrated the presence of Ascomycota, specifically, Candida spp., after oral antibiotics, despite negative fecal fungal culture. C. albicans administration enhanced the severity of the C. difficile infection model as determined by mortality rate, weight loss, gut leakage (FITC-dextran assay), and serum and intestinal tissue cytokines. This occurred without increased fecal C. difficile or bacteremia, in comparison with C. difficile gavage alone. Candida lysate with C. difficile increased IL-8 production from HT-29 and Caco-2 human intestinal epithelial cell-lines. Bifidobacterium attenuated the disease severity of the C. difficile plus Candida model. The reduced severity was associated with decreased Candida burdens in feces. In conclusion, gut C. albicans worsened C. difficile infection, possibly through exacerbation of inflammation. Hence, a mouse model of Clostridium difficile infection with C. albicans present in the gut may better model the human patient condition. Gut fungal mycobiome investigation in patients with C. difficile is warranted and may suggest therapeutic targets.


Subject(s)
Bifidobacterium/physiology , Candida albicans/pathogenicity , Clostridium Infections/microbiology , Administration, Oral , Animals , Caco-2 Cells , Clostridium Infections/therapy , Disease Models, Animal , Gastrointestinal Microbiome/physiology , HT29 Cells , Humans , Interleukin-8/biosynthesis , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiopathology , Male , Mice , Mice, Inbred C57BL , Mycobiome/physiology , Permeability , Probiotics
SELECTION OF CITATIONS
SEARCH DETAIL
...